期刊文献+

用割角多边形产生Bernstein-Bézier曲线的更小包围域 被引量:1

Smaller bounding region of Bernstein-Bézier curve generated by its corner-cutting polygon
下载PDF
导出
摘要 基于Bézier曲线的控制多边形,介绍了割角多边形的概念.割角多边形的顶点可以由控制多边形的顶点快速递推得到,其几何意义是对控制多边形进行一系列的中点割角过程.进而提出了利用割角多边形来逼近Bern—stein-Bézier多项式曲线的新方法.当Bernstein-Bézier多项式曲线的次数为4~8时,分别导出了利用割角多边形逼近多项式曲线的精确界,此界值比利用控制多边形和拟控制多边形逼近Bernstein-Bézier多项式曲线所得的界值大为减小,极大地缩小了曲线的包围域,显著提高了逼近精度,节省了计算时间. A new concept called corner-cutting polygon was introduced based on the control polygon of Bézier curve. The vertices of corner-cutting polygon can be deduced quickly from the vertices of control polygon, and the geometric meaning is that corner-cutting polygon can be produced quickly from control polygon by using central subdivision algorithm. Furthermore, a new method of approximating Bernstein- Bézier polynomial curve using its corner-cutting polygon was proposed. The sharp bounds to approximate Bernstein-Bézier polynomial curves of degree 4- 8 by using the corner-cutting polygons were derived, which were greatly less than the bounds obtained by using the control polygons and the quasi polygons. Thus the bounding regions of the curves were greatly reduced. The method can obviously improve approximating precision and save computing time.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第6期941-944,共4页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60373033 60333010 60503057) 国家"973"重点基础研究发展规划资助项目(2004CB719400)
关键词 图形软件 求交测试 包围域 Bernstein—Bézier曲线 割角多边形 graphics software intersection testing bounding region Bernstein-Bézier curve corner- cutting polygon
  • 相关文献

参考文献2

二级参考文献1

共引文献6

同被引文献13

  • 1Reif U.Best bounds on the approximation of polynomials and splines by their control structure[J].Computer Aided Geometric Design,2000,17(6):579-589.
  • 2Carnicer J M,Floater M S,Peňa J M.The distance of a curve to its control polygon[J].Real Academia de Ciencias Exactas,Físicas y Naturales.Serie A:Matemátticas (RACSAM),2002,96(2):175-183.
  • 3Karavelas M I,Kaklis P D,Kostas K V.Bounding the distance between 2D parametric Bézier curves and their control polygon[J].Computing,2004,72(1/2):117-128.
  • 4Mustafa G,Chen F L,Deng J S.Estimating error bounds for binary subdivision curves/surfaces[J].Journal of Computational and Applied Mathematics,2006,193 (2):596-613.
  • 5Cashman T J,Dodgson N A,Sabin M A.Selective knot insertion for symmetric,non-uniform refine and smooth B-spline subdivision[J].Computer Aided Geometric Design,2009,26(4):472-479.
  • 6刘鹏,雍俊海,古和今.B样条曲线与其控制多边形的局部偏差上界[C] //全国第15届计算机辅助设计与图形学学术会议论文集.北京:清华大学出版社,2010:800-805.
  • 7Wang G J,Xu W.The termination criterion for subdivision of the rational Bézier curves[J].CVGIP:Graphical Models and Image Processing,1991,53(1):93-96.
  • 8Narin D,Peters J,Lutterkort D.Sharp,quantitative bounds on the distance between a polynomial piece and its Bézier control polygon[J].Computer Aided Geometric Design,1999,16(7):613-631.
  • 9Zhang R J,Wang G J.Sharp bounds on the approximation of a Bézier polynomial by its quasi-control polygon[J].Computer Aided Geometric Design,2006,23(1):1-16.
  • 10Zhang R J,Ma W Y.A simple and efficient approximation of a Bézier piece by its cutdown polygon[J].Computer Aided Geometric Design,2009,26(3):336-341.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部