期刊文献+

无网格法中边界畸变的控制与计算效率的提高 被引量:2

Improvement of boundary aberration and computation efficiency in meshless method
下载PDF
导出
摘要 分析比较了常用的2种无网格法的形函数,即采用光滑粒子流体动力学(SPH)法与移动最小二乘(MLS)法构造的形函数,指出SPH形函数在特定情况下易在边界处产生畸变的原因,并提出了在边界外围设置虚节点以改善边界畸变的方法.分别通过配点法和无网格Galerkin(EFG)法计算了一维和二维算例,讨论了不同的边界条件处理方式对计算精度的影响,结果表明Lagrange乘子法处理边界条件的精度比点插值法高.在EFG法的一维悬臂梁算例分析中,讨论了节点支撑域半径和高斯积分阶次对计算量和计算精度的影响.分析表明,当使用单点高斯积分时,节点支撑域的变化易导致计算结果不稳定,提高高斯积分阶次能够降低计算结果对节点支撑域大小变化的敏感性并提高计算精度,但同时增加了计算量. Two usual methods for constructing the shape functions of meshless methods, smooth particles hydrodynamics (SPH) and moving least square (MLS), were analyzed and compared. The reason of boundary aberration in SPH was indicated, and the virtual points method which assigned extra points outside the boundary was presented to control the boundary aberration. Allocation method and element-free Galerkin method were used to resolve the one-dimensional and two-dimensional differential equations. Computation results showed that Lagrange multiplier method has better accuracy than point interpolation method in dealing with boundary conditions. Cantilever beam example illustrated the influence of support radius and Gauss integral point on accuracy and cost. The result indicates that single Gauss integral point is affected by the variation of support radius, however higher order Gauss integral points reduce the sensitivity to the variation of support radius and improve the computational accuracy, while the computation cost increases.
机构地区 浙江大学力学系
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第6期963-967,共5页 Journal of Zhejiang University:Engineering Science
基金 浙江省教育厅科研项目
关键词 无网格法 光滑粒子流体动力学(SPH) 移动最小二乘(MLS) 无网格Galerkin(EFG) meshless method smooth particles hydrodynamics (SPH) moving least square (MLS) element free Galerkin (EFG)
  • 相关文献

参考文献9

  • 1BELYTSCHKO T,KRONGAUZ Y,ORGAN D.Meshless methods:an overview and recent developments[J].Computer Methods in Applied Mechanical Engineering,1996,139(1-4):3-47.
  • 2LIU W K,ZHANG Y F.Reproducing kernel particle methods[J].International Journal for Numerical Methods in Engineering,1995,20(6):1081-1106.
  • 3LIU G R.Assessment and applications of point interpolation methods for computational mechanics[J].International Journal for Numerical Methods in Engineering,2004,59(10):1373-1397.
  • 4曾清红,卢德唐.耦合径向基函数与多项式基函数的无网格方法[J].计算物理,2005,22(1):43-50. 被引量:4
  • 5ZHANG G M,BATRA R C.Modified smoothed particle hydrodynamics method and its application to transient problems[J].Computational Mechanics,2004,34(2):137-146.
  • 6JOHNSON G R,BEISSEL S R,STRYK R A.A generalized particle algorithm for high velocity impact computation[J].Computational Mechanics,2000,25(2):245-256.
  • 7MONAGHAN J J.An introduction to SPH[J].Computer Physics Communications,1988,48(1):89-96.
  • 8张雄,宋康祖,陆明万.紧支试函数加权残值法[J].力学学报,2003,35(1):43-49. 被引量:13
  • 9KRONGGAUZ Y,BELYSCHKO T.Enforcement of essential boundary conditions in meshless approximation using finite elements[J].Computer Methods in Applied Mechanical Engineering,1996,131(1/2):133-145.

二级参考文献42

  • 1Monaghan J J.An introduction to SPH[J].Computer Physics Communications,1988,48:89—96.
  • 2Liu W K, Jun S, Zhang Y F. Reproducing kernel partieal methods [J] . International Journal for Numerical Methods in Fluid, 1995,20:1981 - 1106.
  • 3Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1994,37 : 229 - 256.
  • 4Onate E, Idelsohn S, Zienkiewiez O C, et al. A finite point method in computational mechanics. Applications to convective transport and fluid flow [J] . International Journal for Numerical Methods in Engineering, 1996,39:3839 - 3866.
  • 5Babuska, Melenk J M. The partition of unity method [J] . Computer Methods in Applied Mechanics and Engineering, 1997,40:727-758.
  • 6Liszka T J, Duarte C A M, Tworzydlo W W. Hp-meshless cloud method [J]. Computer Methods in Applied Mechanics and Engineering, 1996,139 : 263 - 288.
  • 7Atluri S N, Sladek J, Sladek V, Zhu T. The local boundary integral equation(LBIE) and it's meshless implementation for linear elasticity [J]. Computational Mechanics,2000,25 : 180 - 198.
  • 8Atluri S N, Zhu T. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics [J]. ComputationalMechanics, 2000,25:169 - 179.
  • 9Atluri S N, Zhu T. New concepts in meshless methods [J]. International Journal for Numerical Methods in Engineering, 2000,47:537- 556.
  • 10Fasshauer G E. Solving partial differential equations by collocation with radial basis functions [A]. In: Mehaute A L, Rabut C,Schumaker L L eds. Surface Fitting and Multiresolution Methods. Vanderbih University Press, 1997. 131 - 138.

共引文献15

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部