期刊文献+

基于Q-Learning的智能体训练 被引量:1

How to Train the Agent Based on the Way of Q-Learning
下载PDF
导出
摘要 针对机器人足球比赛的多智能体环境下智能体的训练问题,提出了一种将模糊控制与Q-Learning相结合的学习方法,并在学习过程中自动调节回报函数以获得最优策略,此方法的有效性在中型组的仿真平台上得到了验证,并取得了较好效果,还可将它改进应用于其他多智体环境。 In order to solve the problem of agent training in the multi-agent circumstances of robot soccer, a new method of agent learning is put forward, which combines the fuzzy control with the Q-Learning. During the learning process, the reward function is controlled automatically to earn the optimal policy. It is proved that this method is effective on the simulation platform of middle-size league, and the simulation result is good. In addition, it could be adapted to apply in other multi-agent circumstances.
出处 《石家庄铁道学院学报》 2007年第2期37-39,72,共4页 Journal of Shijiazhuang Railway Institute
基金 河北师范大学青年基金(L2004Q15)
关键词 Q-LEARNING 模糊控制 回报函数 Q-Learning fuzzy control reward function
  • 相关文献

参考文献5

  • 1Albus J S.A theory of cerebellar function[J].In Mathematical Biosciences,2000,10(2):25-61.
  • 2Jelle Kok,Remco de Boer,Nikos Vlassis,et al.Towards an optimal scoring policy for simulated soccer agents[C]// RoboCup-2000:Robot Soccer World Cup IV,2000:292-299.
  • 3Adorni G,Cagnoni S,Mordonini M,et al.Team/goal-keeper coordination in the robocup mid-size league[C]//RoboCup-2000:Robot Soccer World Cup IV.2000:266-278.
  • 4Thilo Weigel,Willi Auerbach,Markus Dietl,et al.CS Freiburg:Doing the Right Thing in a Group[C]//RoboCup 2000:Robot Soccer World Cup Ⅳ 2000:52-63.
  • 5康小强.多Agent系统中的Agent模型与合作策略研究[R].北京:清华大学信息技术学院,2002.

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部