期刊文献+

BP神经网络在空袭目标优选中的应用 被引量:2

Application of BP NN in Optimal Selection of Air Raid Objects
下载PDF
导出
摘要 空袭目标优选,应用改进的BP神经网络算法。即在空袭目标优选评估指标体系基础上,建立BP神经网络,通过定义学习代价函数、确定函数输出信号、修正函数信号。并通过网络初始化等改进BP算法,以激活函数敏感性,加速网络收敛。算例验证了该算法合理性,稳定性良好。 The optimal selection of air raid objects adopts modified BP NN algorithm. That is, based on the optimal selection of air raid objects evaluation index system, modified BP NN algorithm was built, while the algorithm ensure function output signal and modify function signal through define study cost function. Modify the BP algorithm through network initialization to active function sensitivity and accelerate network convergence. The results proved the rationality and stability of models.
出处 《兵工自动化》 2007年第6期5-7,共3页 Ordnance Industry Automation
基金 高等学校骨干教师资助计划(GG-1105-90039-1004)
关键词 空袭目标 目标优选 BP神经网络 改进BP算法 网络初始化 函数敏感性 Air raid objects Optimal selection of objects BP NN Modified BP NN algorithm Network initialization Function sensitivity
  • 相关文献

参考文献6

  • 1中国人民解放军总参谋部动员部.美军空袭作战研究[M].北京:军事科学出版社,2005.
  • 2邱学军.城市防空中需掩护目标的重要性层次分析[J].现代防御技术,2002,30(1):6-10. 被引量:12
  • 3Simon Haykin. Neural Networks: A Comprehensive foundations (2nd Edition) [M]. Published by Pearson Education, Inc, Publishing as Prentice Hall PTR, Copyright by Prentice Hall, Inc., 1999.
  • 4Lecun Y. Efficiency Learning and Second-Order Methods [M]. A Turorial at NIPS 1993, Denver.
  • 5Wessels L F A., Bamard E, Avoiding False Local minima by Proper intialization of Connections [J]. IEEE Transaction on Neural Networks, 1992, 3 (6): 899-905.
  • 6Maclin R, Shavlik J W. Combining the Predictions of Multiple Classifiers: Using Competitive Learning to Initialize Neural Networks [A]. In: Proc the 14th International Joint Conference on Artificial Intelligence, Montreal [C]. Canada, 1995. 524-530.

二级参考文献2

  • 1王树禾.数字模型基础[M].合肥:中国科技大学出版社,1996.60-63.
  • 2钱颂迪.运筹学[M].北京:清华大学出版社,1996..

共引文献11

同被引文献6

  • 1曹淑信,等.信息火力战[M].北京:国防大学出版社,2006:100-134.
  • 2Maclin R,Shavlik J.W. Combining the Predictions of Multiple Classifiers: Using Competitive Leaming tolnitialize Neural Networks[A]. In: Proc the 14thIntemational Joint Conference on Artificial Intelligence, Montreal[C]. Canada, 1995:524-530.
  • 3Wessels L.FA.,Bamard E,Avoiding False Local minimaby Proper Intialization of Connections[J].IEEETransaction on Neural Networks, 1992,3(6):899-905.
  • 4Lecun Y.Efficiency Learning and Second-Order Methods[M].A Turorial at NIPS 1993,Denver.
  • 5程永鑫 等.基于人工神经网络的改进算法研究.重庆通信学院学报,2008,5(3):50-49.
  • 6钱颂迪.运筹学[M].北京:清华大学出版社,2006.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部