期刊文献+

基于分组重量编码的蛋白质功能预测 被引量:1

A method of encoding based on grouped weight for protein function prediction
下载PDF
导出
摘要 从蛋白质序列出发,采用分组重量编码(Encoding Based on Grouped Weight,简记EBGW),并结合最近邻居算法对蛋白质功能进行预测。对酵母(Saccharomyces cerevisiae)蛋白质的1826条序列进行预测,整体预测准确率与其他基于序列信息的蛋白质功能预测方法相当。实验结果表明基于EBGW编码方案的新方法可有效地应用于蛋白质功能预测。 From protein sequences,the encoding method of EBGW(Encoding Based on Grouped Weight)is applied to protein function prediction associated with the nearest neighbor algorithm.By analyzing the 1 826 Sacchammyces cerevisiae proteins,the average speciflcity precision is 83%.While the dataset is the same,this average speciflcity precision of this method is 11% higher than the Global optimization method.The experiment results show that the method of this paper is efficient to assign function to the unknown proteins.
出处 《生物信息学》 2007年第1期25-27,共3页 Chinese Journal of Bioinformatics
基金 国家自然科学基金资助项目(NO.60603054)
关键词 分组重量编码 蛋白质功能预测 特征序列 最近邻居算法 Encoding Based on Grouped Weight protein function characteristic sequence nearest neighbor algorithm
  • 相关文献

参考文献6

  • 1[1]Vazquez A,Flammini A,Maritan A,et al.Global function prediction from protein-protein interaction networks[J].Nature Biotechnology,2003,21(6):697-700.
  • 2[2]Marcotte E M,Pellegrini M,Thompson M J,et al.A combined algorithm for genome-wide prediction of protein function[J].Nature,1999,402:83-86.
  • 3[3]Ross D.K,Karwath A,Clare A,et al.The utility of different representations of protein sequence for predicting functional class[J].Bioinformatics,2001,17(5):445-454.
  • 4[4]Yu-Dong Cai,A.J.Diog.Prediction of Saccharomyces cerevisiae protein functional class from functional domain composition[J].Bioinformatics,2004,20(8):1292-1300.
  • 5[5]Zhen-Hui Zhang,Zheng-Hua Wang and Yong-Xian Wang,A New Encoding Scheme to Improve the Performance of Protein Structural Class prediction[J].Lecture Notes in Computer Science,2005,36(11):1164-1173.
  • 6[6]Cover T M and Hart P E.Nearest neighbor pattern classification[J].IEEE Trans.Inform.Theroy,1967,13(1):21-27.

同被引文献4

  • 1张婧,杨炳儒.基于混合遗传算法的聚类模式数据挖掘方法[J].微计算机信息,2006,22(06X):219-221. 被引量:5
  • 2Ji D, Song B, Han F. An improved KNN algorithm of intelligent built-in test. Proceedings of 2008 IEEE International Conference on Networking, Sensing and Control, 2008, 4: 442-445.
  • 3Kharsikar S, Mugler D, Sheffer D, Moore F, et al. A weighted k- nearest neighbor method for gene ontology based protein function prediction. IEEE Computer Society, 2007, 61: 25-31.
  • 4Li X, Bo L, Zeng Q, Luo J W. Protein functional class prediction using global encoding of amino acid sequence. Journal of Theoretical Biology, 2009, 261: 290-293.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部