摘要
从蛋白质序列出发,采用分组重量编码(Encoding Based on Grouped Weight,简记EBGW),并结合最近邻居算法对蛋白质功能进行预测。对酵母(Saccharomyces cerevisiae)蛋白质的1826条序列进行预测,整体预测准确率与其他基于序列信息的蛋白质功能预测方法相当。实验结果表明基于EBGW编码方案的新方法可有效地应用于蛋白质功能预测。
From protein sequences,the encoding method of EBGW(Encoding Based on Grouped Weight)is applied to protein function prediction associated with the nearest neighbor algorithm.By analyzing the 1 826 Sacchammyces cerevisiae proteins,the average speciflcity precision is 83%.While the dataset is the same,this average speciflcity precision of this method is 11% higher than the Global optimization method.The experiment results show that the method of this paper is efficient to assign function to the unknown proteins.
出处
《生物信息学》
2007年第1期25-27,共3页
Chinese Journal of Bioinformatics
基金
国家自然科学基金资助项目(NO.60603054)
关键词
分组重量编码
蛋白质功能预测
特征序列
最近邻居算法
Encoding Based on Grouped Weight
protein function
characteristic sequence
nearest neighbor algorithm