期刊文献+

流体动力学中不连续源项大Reynolds数问题的有限体积法 被引量:1

Finite volume method for large Reynolds number problem with discontinuous source term in fluid dynamics
原文传递
导出
摘要 讨论不连续源项大Reynolds数问题,引入2种非均匀网格技术,应用有限体积法构造了数值方法:Sh-ishkin型有限体积法和多过渡点型有限体积法.数值实验显示,2种方法都较好地模拟了边界层和内部层的性质,具有一致收敛的计算效果;多过渡点型有限体积法明显优于Farrell所提出的Shishkin有限差分法. Discussed large Reynolds number problem with discontinuous source term, constructed two numerical methods with two non-equadistant mesh techniques, and traditional finite volume method. One is Shishkin's type finite volume method, the other is multi-transition point's type finite volume method. Numerical experiments indicate the both are well fitted the property of boundary layer and interior layer, and are unifromly convergence scheme. Multi-transition point's type finite volume method is better than finite difference method, which is constructed by Farrell.
作者 蔡新 储理才
机构地区 集美大学理学院
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期353-360,共8页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(A0610025 A0410021) 集美大学博士科研基金资助项目(ZQ2006034)
关键词 流体动力学 大Reynolds数 不连续源项 有限体积法 fluid dynamics large Reynolds number discontinuous source term finite volume method
  • 相关文献

参考文献11

  • 1Farrell P,Hegarty A F,Miller J J H,et al.Robust computational techniques for boundary layers[M].Boca Raton:Chapman and Hall/CRC Press,2000.
  • 2CAI,Xin(蔡新).A CONSERVATIVE DIFFERENCE SCHEME FOR CONSERVATIVE DIFFERENTIAL EQUATION WITH PERIODIC BOUNDARY[J].Applied Mathematics and Mechanics(English Edition),2001,22(10):1210-1215. 被引量:3
  • 3Cai X,Liu F W.Uniform convergence difference schemes for singularly perturbed mixed boundary problems[J].Journal of Computational and Applied Mathematics,2004,166:31-54.
  • 4Cai X,Liu F W.A Reynolds uniform scheme for singularly perturbed parabolic differential equation[J].ANIIAM J,2007,47:633-638.
  • 5Farrell P,Hegarty A F,Miller J J H,et al.Singularly perturbed convection-diffusion problems with boundary and weak interior layers[J].Journal of Computational and Applied Mathematics,2004,166:133-141.
  • 6Farrell P,Hegarty A F,Miller J J H,et al.Global maximum norm parameter-uniform numerical methods for a singularly perturbed convection-diffusion problems with discontinuous covection coefficient[J].Mathematical and Computer Modelling,2004,40(11/12):1375 -1392.
  • 7Farrell P,Hegarty A F,Miller J J H,et al.Singularly perturbed convection-diffusion problems with non-smooth data[J].Journal of Computational and Applied Mathematics,2004,166:233-245.
  • 8蔡新.带有小参数和不连续源项的反应-扩散问题的多过渡点格式[J].厦门大学学报(自然科学版),2005,44(4):464-467. 被引量:2
  • 9Zheng T,Zhuang T,Cai X.A petrov -galerkin method for singularly perturbed time dependent convection-diffusion equation with non-smooth data[C]//Proceedings of the Sixth World Congress on Computational Mechanics in Conjunction with the Second Asian-Pacific Congress on Computational Mechanics.Being:Tsinghua University Press,2004:614.
  • 10Versteeg H K,Malalasekera W.An introduction to computational fluid dynamics[M].London:Pearson Prentice Hall,2002.

二级参考文献8

  • 1Farrell P A,Miller J J H,O'Riordan E,et al. Singularly perturbed differential equations with discontinuous source terms[A]. Analytical and Numerical Methods For Convection-Dominated and Singularly Perturbed Problems[C]. USA: Science Publishers, Inc. , 1998. 106- 112.
  • 2Farrell P A, Miller J J H,O'Riordan E,et al. Singularly perturbed convection diffusion problems with boundary and weak interior layers[A]. An International Conference on Boundary and Interior Layers Computational and Asymptotic Methods[C]. Australia:The University of Western Australia,2002. 115-120.
  • 3O'Riordan E,Shishkin G I. Singularly perturbed parabolic problems with non-smooth data [A]. An International Conference on Boundary and Interior Layers Computational and Asymptotic Methods[C]. Australia: The University of Western Australia, 2002. 201- 206.
  • 4Cai X,Liu F. Uniform convergence difference schemes for singularly perturbed mixed boundary problems[J]. Journal of Computational and Applied Mathematics, 2004,166:31-54.
  • 5Lin Peng-cheng,Jiang Ben-xian.A singular perturbation problem for periodic boundary differential equation[J].Applied Mathematics and Mechanics.1987(10)
  • 6Kellogg R B,Tsam A.Analysis of some difference approximations for a singular perturbation problem without turning points[].Mathematics of Computation.1978
  • 7CAI Xin.A singular perturbation problem for conservative differential equation with periodic boundary[].Journal of Jimei University (Natural Science ).2000
  • 8CAI Xin,LIN Peng_cheng.Conservative difference scheme of conservative equation with a small parameter[].Journal of Huaqiao University ( Natural Science ).1992

共引文献3

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部