摘要
讨论不连续源项大Reynolds数问题,引入2种非均匀网格技术,应用有限体积法构造了数值方法:Sh-ishkin型有限体积法和多过渡点型有限体积法.数值实验显示,2种方法都较好地模拟了边界层和内部层的性质,具有一致收敛的计算效果;多过渡点型有限体积法明显优于Farrell所提出的Shishkin有限差分法.
Discussed large Reynolds number problem with discontinuous source term, constructed two numerical methods with two non-equadistant mesh techniques, and traditional finite volume method. One is Shishkin's type finite volume method, the other is multi-transition point's type finite volume method. Numerical experiments indicate the both are well fitted the property of boundary layer and interior layer, and are unifromly convergence scheme. Multi-transition point's type finite volume method is better than finite difference method, which is constructed by Farrell.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第3期353-360,共8页
Journal of Fuzhou University(Natural Science Edition)
基金
福建省自然科学基金资助项目(A0610025
A0410021)
集美大学博士科研基金资助项目(ZQ2006034)