期刊文献+

沿曲线的超奇性奇异积分算子的L^p有界性

L^p boundedness of certain hypersingular integral along the curve
下载PDF
导出
摘要 定义R2中超奇性奇异积分算子,其中(t,γ(t))是R2上的某类曲线.当γ″(t)和γ(t)在(0,∞)上非负(或非正)时,Hα,β为Lp(R2)有界. The hypersingular integralHa、βf(x,y)=p·v·∫-1^1f(x-t,y-γ(t))e^-i|t|^-βdt/t|t|^a(a,β〉0),along the curve F(t)=(t,γ(t)),t∈R,Ifγ″(t)is non-negative in(0,∞),then Ha、βis L^p bounded on R^2.
机构地区 浙江大学数学系
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2007年第4期364-366,共3页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(No.10571156) 973项目(批准号G1999075105) 浙江省人才基金资助项目(批准号:RC97017) 教育部博士点基金项目(批准号:20030335019)
关键词 HILBERT变换 超奇性奇异积分算子 L^p有界 Hilbert transform hypersingular integral L^p boundedness
  • 相关文献

参考文献10

  • 1HIRSCHMAN J I I.On multiplier transformations[J].Duke Math J,1959,26:221-242.
  • 2WAINGER S.Special trigonometric series in k-dimensions[J].Memoirs of American Mathematical Society,1965,59:102.
  • 3STEIN E M.Singular integrals,harmonic functions and differentiability properties of functions of several variables[J].Proc Symposia in Pure Mathematics,1967,10:316-335.
  • 4FEFFERMAN C.Inequalities for strongly singular convolution operators[J].Acta Math,1970,124:9-36.
  • 5FEFFERMAN C,STEIN E M.Hp Spaces of several variables[J].Acta Math,1972,229:137-193.
  • 6CARBERY A,CHRIST M,VANCE J,et al.Operators associated to flat plane curves:Lp estimates via dilation methods[J].Duke Math J,1989,59:675-700.
  • 7NAGEL A,VANCE J S,WAINGER S,et al.Hilbert transform for convex curves[J].Duke Math J,1983,50:735-744.
  • 8STEIN E M,WAINGER S.Problems in harmonic analysis related to curvature[J].Bull Amer Math Soc.1978,84:1239-1295.
  • 9SHARAD C.Lp-bounds for hypersingular integral operators along curves[J].Pacific J of Mathematics,1996,175(2):389-416.
  • 10STEIN E M.Harmonic Analysis:Real-Variable Methods,Orthogonality,and Oscillatory Integrals[M].Princeton:Princeton Univ Press,1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部