期刊文献+

基于RBF神经网络的ECT图像重建 被引量:2

ECT image reconstruction based on RBF neural networks
下载PDF
导出
摘要 线性反投影算法是最常用的ECT图像重建算法,该算法将极板电容测量值与成像区域介电常数间的非线性关系作线性化近似.由于神经网络的非线性映射能力可用来避免这种线性化近似,为此探讨了基于RBF神经网络的16极板ECT系统的图像重建方法.采用最大矩阵法确定RBF神经网络隐层神经元数目,用最小邻聚类方法确定径向基函数的宽度和中心,建立了极板电容测量值与成像区域介电常数间的RBF神经网络映射.仿真实验结果表明,基于RBF神经网络的ECT图像重建方法重建速度与线性反投影法相当,重建质量优于线性反投影法. The algorithm most commonly used for ECT image reconstruction is the linear back-projection (LBP), where the non-linear relationship between the permittivity distribution and capacitance measurements is usually approximated to the linear. Because the non-linear mapping ability of neural networks can avoid such linear approximation, the image reconstruction of 16-electrode ECT system based on RBF neural networks was discussed. RBF neural networks were trained to convert the electrode capacitance measurements to the permittivity distributions in image region. The number of hidden nodes in RBF neural networks was determined using maximal matrix element method, and the center and width of RBF function were determined using the nearest neighbor-clustering algorithm. Simulation results indicate that this image reconstruction algorithm can provide images superior to those obtained by the LBP algorithm within a similar reconstruction time.
出处 《沈阳工业大学学报》 EI CAS 2007年第3期322-325,共4页 Journal of Shenyang University of Technology
基金 辽宁省科学技术基金博士启动资助项目(2001102031)
关键词 电容层析成像 图像重建 RBF神经网络 最大矩阵法 最小邻聚类法 electrical capacitance tomography image reconstruction RBF neural networks maximal matrix element method nearest neighbor-clustering algorithm
  • 相关文献

参考文献8

二级参考文献25

  • 1黄松明.层析成像技术在过程检测中的应用[J].清华大学学报,1989,29(4):98-105.
  • 2徐苓安.电层析成象技术在生产过程中的应用[J].东北大学学报,2000,21(7):1-5.
  • 3[1]Beck M S.Feature on process tomography[J].Measurement+Control,1997,30:196-206.
  • 4[4]Yan H,Shao F Q,Wang S.Fast calculation of sensitivity distributions in capacitance tomography sensor[J].Electronics etters,1998,34(20):1936-1937.
  • 5[8]Yan H,Shao F Q,Xu H,et al.Three-dimensionalanalysis of electrical capacitance tomography sensing fields[J].Meas.Sci.Technol,1999,10:717-725.
  • 6M Bianchini ,P Frascono, M Cori.Learning without minima radial basis function network[J].IEEE Trans on Neural Networks,1995;6(3):749~756
  • 7F Girosi,T Poggio. Neural network and the best approximation property[J].Biological Cybernetics, 1990;63:169~176
  • 8Uykan Z,Gtuzelis C,Celebi Ertugrul M.Analysis of input-output clustering for determining centers of RBFN[J].IEEE Trans on Neural Networks, 2000; 11 (4): 851~858
  • 9W Pedrycz. Conditional Fuzzy clustering in the design of radial basis function neural networks[J].IEEE Trans on Neural Networks,1998;9(4) :601~612
  • 10Gonzalez J,Rojas I,Pomares H et al.A new clustering technique for function approximation[J].IEEE Trans on Neural Networks,2002; 13( 1 ): 132~142

共引文献193

同被引文献72

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部