摘要
本文研究基于神经网络的有容差线性电路故障诊断问题,提出了把反向传播(BP)神经网络训练成故障诊断器的具体方法.仿真实验结果表明,该故障诊断器不仅在诊断精度方面超过了所有传统算法,而且使测后诊断速度提高了至少一个数量级.此外,它对神经网络内部硬件故障具有一定的容错能力.
Based on the neural networks, the diagnosis problem of linear circuit with element parameter tolerances is addressed in this paper. Specific strategies are proposed for training the back-propagation (BP) neural network to be a fault diagnoser. The experimental results demonstrate that the diagnoser performs better than any classical approaches in terms of accuracy,and provides at least an order-ofmagnitude improvement in the speed of post-fault diagnosis. In addition, it can tolerate its internal hardware damage to a certain extent.
出处
《计算机学报》
EI
CSCD
北大核心
1997年第4期360-366,共7页
Chinese Journal of Computers
基金
国家自然科学基金
关键词
故障诊断
BP神经网络
线性电路
容错
Fault diagnosis, BP neural network, linear circuit, fault tolerance.