期刊文献+

用CUPID模型模拟小麦组分温度分布:敏感性分析与验证 被引量:7

Using CUPID to Simulate Wheat Canopy Component Temperatures Distribution:Sensitivity Analysis and Evaluation
下载PDF
导出
摘要 组分温度分布是决定农作物冠层热红外辐射方向特性的重要因素之一,为了分析小气候参数对冠层组分温度的影响,并分析其不确定性,对一个典型的土壤-植被-大气传输(SVAT)模型CUPID进行了组分温度模拟的敏感性和不确定性分析,并用实测温度分布信息进行了验证。详细描述了模拟和验证过程,结果表明:土壤组分温度不确定性较大,冠层组分温度不确定性较小(约2%),气温和土壤湿度对总体不确定性贡献最大;模拟组分温度与实测温度分布趋势一致。 The sensitivity analysis and validation of a SVAT (Soil-vegetation-atmosphere transfer) model (CUPID) are carried out to identify the parameters of CUPID with the largest influence on canopy component average temperatures and temperature profiles. The simulation process and field experimental designs are presented in detail. The results show that the overall uncertainty of the soil temperatures is unstable during growing season, while the uncertainty of canopy temperature stays at about 2% ; air temperature and soil water content are the two biggest error-contributors. It is found by evaluation that the trend between simulated and measured temperatures is consistent.
出处 《遥感学报》 EI CSCD 北大核心 2007年第1期94-102,共9页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金项目(编号:40371087) 中国科学院知识创新工程重要方向性项目(编号:KZCX3-SW-338-2) 973项目地球表面时空多变要素的定量遥感理论及应用(编号:G2000077903)资助
关键词 敏感性分析 不确定性分析 温度廓线 SVAT 组分温度模拟 sensitivity analysis uncertainty analysis temperature profiles SVAT component temperature simulation
  • 相关文献

参考文献15

  • 1Chen L F,Zhuang J L,Xu X R.The Correlationship of Multichannel Thermal Infrared Remote Sensing Information and its Effect on Retrieval of Land Surface Temperature[J].Chinese Science Bulletin,1999,44(17):1627-1632.
  • 2Norman J M.Modeling the Complete Crop Canopy[A].Barfield B J,Gerber J.Modification of the Aerial Environment of Crops[C].American Society of Agricultural Engineers,St.Joseph,Michigan,1979.
  • 3Norman J M.Synthesis of Canopy Processes[A].Russell G,Marshall B,Jarvis P.Plant Canopies:Their Growth,Form and Function[C].Cambridge University Press,Cambridge,NY,1988.
  • 4Inclána M G,Forkela B R.Comparison of Energy Fluxes Calculated with the Penman-Monteith Equation and the Vegetation Models SiB and Cupid[J].Journal of Hydrology,1995,166(3-4):193-211.
  • 5Li J,Li Z L,Menenti M.Modeling of TIR Radiative Transfer in the Soil-vegetation-atmosphere System:Sensitivity to Soil Water Content and LAI and Simulation of Complex Scenes[A].Proceedings of IGARSS[C].2002,Ⅰ-Ⅵ:39-41.
  • 6Weiss A,Lukens D L,Norman J M,et al.Leaf Wetness in Dry Beans under Semi-arid Conditions[J].Agricultural and Forest Meteorology,1989,48(1-2):149-162.
  • 7柳钦火 李小文 陈良富.星机地同步定量遥感综合实验(北京2001).遥感学报,2002,6:43-49.
  • 8肖青,柳钦火,李小文,陈良富,刘强,辛晓洲.热红外发射率光谱的野外测量方法与土壤热红外发射率特性研究[J].红外与毫米波学报,2003,22(5):373-378. 被引量:41
  • 9Saltelli A.What is Sensitivity Analysis? In Saltelli,Chan A K,Scott E M.Sensitivity Analysis[M].Wiley,New York,2000.
  • 10Dufrene E,Davi H,Francois C,et al.Modelling Carbon and Water Cycles in a Beech Forest:Part Ⅰ:Model Description and Uncertainty Analysis on Modeled NEE[J].Ecological Modeling,2005,185(2-4):407-436.

二级参考文献12

  • 1Ingram P M, Henry M A. Sensivity of iterative spectrally smooth temperature/emissivity separation to algorithmic assumptions and measurement noise. IEEE Transactions on Geoscience and Remote Sensing, 200l, 39(10) : 2158-2167.
  • 2Rubio E, Caselles V, Badenas C. Emissivity measurements of several soils and vegetation types in the 8-14μm wave band : analysis of two field methods. Romote Sensing of Environment, 1997, 59:490-521.
  • 3Salisbury J W, D' Aria D M. Emissivity of terrestrial materials in the 8 - 14μm atmospheric windows. Remote Sensing of Environment, 42 : 83-110.
  • 4Salisbury J W, D' Aria D M. Infrared (8 - 14μm) remote sensing of soil particle size. Remote sensing of Enviromnent.1992, 42:157-165.
  • 5Nerry F, Labed J, Stoll M P. Spectral properties of land surfaces in the thermal infrared, 1. Laboratory measurements of absolute spectral emissivity signatures. Journal of Geophysical Research, 1990, 95( B5 ) : 7027-7044.
  • 6Hook S J, Gabell G A. A comparison of techniques for extracting emissivity information from thermal infrared data for geological studies. Remote Sensing of Environment, 1992,42:123-135.
  • 7Kealy P S, Hook S J. Separating temperature and emissivity in thermal infrared multispectral scanner data: implication for recovering land surface temperature. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31 : 1155-1164.
  • 8Labed J, Stoll M P, Spatial variability of land surface emissivity in the thermal infrared band: spectral signature and effective surface temperature. Remote Sensing of Environment,1991,38:1-17.
  • 9Snyder W C, Wan Z W. Surface temperature correction for active infrared reflectance measurements of natural materials. Applied Optics. 1996. 35(13) : 2216-2220.
  • 10Becker F. The impact of spectral emissivity on the measurements of land surface temperature from a satellite. International Journal of Remote Sensing, 1987, 8(10) : 1509-1522.

共引文献41

同被引文献123

引证文献7

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部