期刊文献+

基于IEA优化的农药降解GM(1,1)预测模型 被引量:5

The GM (1,1) Prediction Model of Pesticide Degradation Optimized by IEA
下载PDF
导出
摘要 将免疫进化算法(IEA)和灰色系统理论结合起来,建立了农药降解的IEA-GM(1,1)预测模型,分别对喹噁硫磷在豇豆中的残留量、代森锰锌在西红柿中的消解动态、粉锈宁在麦穗中的残留量、抗蚜威在黄瓜果实中的残留量进行预测。结果表明,IEA-GM(1,1)预测模型拟合精度和拟合效果明显优于其他模型,而且该模型不受时间等距条件的限制,建模时不用进行时间变换,可用于预测施药后任意时刻的农药残留量。IEA和灰色系统理论同时用于农药降解建模原理直观、简便、易行,为农药在生态环境中降解规律和降解模型的研究提供了一条新的途径。 The IEA-GM (1,1) prediction model of the pesticide degradation was established according to immune evolutionary algrorithm (IEA) and gray system theory. And the degradation of residual quinalfhosion in cowpea, the degradation of residual mancozeb in lycopersicon esculentum miller, the degradation dynamics of triadimefon in ear of wheat and the dynamic dispelling of pirimicarb residue in cucumber fruit were predicted based on the IEA-GM (1,1) prediction model. The results showed that the IEA-GM (1,1) prediction model exhibited a higher accuracy with a higher correlation coeiticent (R^2) and a lower residual sum of square (S^2) than other models in the corresponding practical ap- plications. According to IEA-GM(1,1) prediction model, the correlation coeiticents (R^2) of the degradation of residual quinalfhosion in cowpea, the degradation of residual mancozeb in lycopersicon esculentum miller, the degradation of triadimefon in ear of wheat and the pirimicarb residue in cucumber fruit were up to 0.999 9, 0.971 6, 0.996 3 and 0.996 3, respectively. Moreover, this model was not limited by the time interval, and it was proved to be simple, convenient and feasible in the calculation of pesticide degradation at any time. Therefore, it would provide a new theoretical way for the establishment of the pesticide residual model and the research of pesticide degradation in ecological environment.
出处 《农业环境科学学报》 CAS CSCD 北大核心 2007年第4期1469-1472,共4页 Journal of Agro-Environment Science
基金 四川省应用基础研究项目(04JY029-010-1) 成都信息工程学院院选科研项目(CRF200403)
关键词 免疫进化算法(IEA) 农药降解 GM(1 1)模型 immune evolutionary algrorithm (IEA) pesticide degradation GM (1,1) model
  • 相关文献

参考文献13

二级参考文献53

共引文献167

同被引文献111

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部