期刊文献+

支持向量机在地铁隧道地表沉降预测中的应用 被引量:1

Application of Support Vector Machine for Subsidence Prediction of Subway Tunnels
下载PDF
导出
摘要 针对北京地铁区间浅埋暗挖隧道,分析了施工导致的地表沉降的影响因素,提出了影响地表变形的主要因素,建立了支持向量机的统计回归预测模型,并用该模型预测的地表沉降,将SVM预测值和BP神经网络预测值与现场量测值进行了对照。结果表明,支持向量机比BP神经网络有较高的预测精度,并且具有小样本、高维数及非线性等优点。 Some influence factors of surface subsidence due to shallow excavation construction in Beijing subway tunnel were analyzed, and the numerical prediction model based on SVMs were founded. The model is used to predict the surface displacements of subway tunnel and compared with the BP neural networks predictions and with measure datum in site. The result indicates, that the accuracy of predictions by SVMs is better then the predictions of BP neural networks, and with some merits of small samples, multi-dimensions and non-linear.
出处 《市政技术》 2007年第4期283-287,共5页 Journal of Municipal Technology
关键词 地铁隧道 浅埋暗挖法 支持向量机 地表沉降 BP神经网络 subway tunnel shallow excavation support-vector-machines surface subsidence BP neural networks
  • 相关文献

参考文献5

  • 1张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2268
  • 2[2](英)克里斯特安尼(Cristianini.N),等.支持向量机导论[M].李国正,王猛,曾华军,译.北京:电子工业出版社,2004.
  • 3[3]V.Vapnik,S.Golowich,and A.Smola.Support vector method for function approximation,regression estimation,and signal processing[C]//In M.Mozer,M.Jordan,and T.Petsche,editors.Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,1997:281-287.
  • 4赵洪波,冯夏庭.非线性位移时间序列预测的进化-支持向量机方法及应用[J].岩土工程学报,2003,25(4):468-471. 被引量:93
  • 5[5]Steve Gunn.Support Vector Machines for Classification and Regression[R].ISIS Technical Report:University of Southampton,1998

二级参考文献5

  • 1刘勇 康力山.非数值并行算法(第二册)——遗传算法[M].北京:科学出版社,1997..
  • 2Burge CJC. A tutorial on support vector machines for pattern recognition[J] .Data Mining and Knowledge Discovery, 1998, (2) :121 - 167.
  • 3Alex J Smola, Bernhard Schoelkopf. A Tutorial on Support Vector Regression[R]. NeuroCOLT2 Technical Report Series, 1998.
  • 4John C Platt. Sequeotial Minimal Optimization:A Fast Algorithm for training Support Vector machines[R].Technical Report,1998
  • 5卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41

共引文献2352

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部