摘要
针对异常检测问题,提出了一种基于实数编码的免疫学习算法,就算法收敛的条件、是否收敛等重要问题进行了研究;给出了算法中重要参数的取值范围。实验结果表明,提出的算法能实现对抗体分布状况的动态优化和对数据模式进行聚类,获得了较高的异常检测准确率。
An immune learning algorithm using real numeric code is proposed aiming at problems about anomaly detection. The constringency condition and astringency of the algorithm is studied. A method of calculating reasonable initial population of antibodies is proposed. A Reasonable range of some main parameters is presented. The experimental result indicates that the algorithm can realize optimization to distribution situation of the antibodies and clustering of data modes. High veracity of anomaly detection is obtained.
出处
《计算机工程》
CAS
CSCD
北大核心
2007年第3期15-17,共3页
Computer Engineering
基金
高等学校博士点专项基金资助项目(20020008004)
关键词
人工免疫
进化学习
异常检测
收敛性
Artificial immune
Evolution and learning
Anomaly detection
Astringency