摘要
提出了Real-Adaboost的一种改进算法。该算法采用预先计算类Haar特征所对应弱分类器在样本空间的划分,并动态更新人脸训练样本的权值。与以往的Real-Adaboost算法比较,该算法大大缩短了训练时间,算法训练时间复杂度降到O(T*M*N),同时加速了强分类器的收敛性能,减少检测器的弱分类器数量,减少检测时间。
This paper proposes a novel human face detection algorithm based on real Adaboost algorithm. Policy that calculates in advance the partitioning of Haar-like feature weak classifiers in sample input space and updating training face samples' weights dynamically is adopted. This algorithm reduces training time cost greatly compared with classical real-Adaboost algorithm. In addition, it speeds up strong classifier converging, reduces the number of weak classifiers and decreases detecting time.
出处
《计算机工程》
CAS
CSCD
北大核心
2007年第3期208-209,212,共3页
Computer Engineering
基金
国家自然科学基金资助项目(60475019)