期刊文献+

动态权值预划分实值Adaboost人脸检测算法 被引量:12

Dynamic Weights and Pre-partitioning Real-Adaboost Face Detection Algorithm
下载PDF
导出
摘要 提出了Real-Adaboost的一种改进算法。该算法采用预先计算类Haar特征所对应弱分类器在样本空间的划分,并动态更新人脸训练样本的权值。与以往的Real-Adaboost算法比较,该算法大大缩短了训练时间,算法训练时间复杂度降到O(T*M*N),同时加速了强分类器的收敛性能,减少检测器的弱分类器数量,减少检测时间。 This paper proposes a novel human face detection algorithm based on real Adaboost algorithm. Policy that calculates in advance the partitioning of Haar-like feature weak classifiers in sample input space and updating training face samples' weights dynamically is adopted. This algorithm reduces training time cost greatly compared with classical real-Adaboost algorithm. In addition, it speeds up strong classifier converging, reduces the number of weak classifiers and decreases detecting time.
作者 武妍 项恩宁
出处 《计算机工程》 CAS CSCD 北大核心 2007年第3期208-209,212,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60475019)
关键词 人脸检测 实值Adaboost 类HAAR特征 层叠分类器 动态权值 Face detection Real-Adaboost Haar-like feature Cascade classifier Dynamic weight
  • 相关文献

参考文献7

  • 1Sung K,Poggio T.Example-based Learning for View Based Human Face Detection[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1998,20(1):39-51.
  • 2Yang M H,Roth D,Ahuja N.Snow-based Face Detection.Advances in Neural Information Processing Systems[M].MIT Press,2000:855-861.
  • 3Viola P,Jones M J.Rapid Object Detection Using a Boosted Cascade of Simple Features[C]//Proc.of IEEE Conf.on Computer Vision and Pattern Recognition,2001:511-518.
  • 4Lienhart R,Maydt J.An Extended Set of Haar-like Features for Rapid Object Detection[C]//Proc.of IEEE ICIP,2002,1:900-903.
  • 5Li S Z,Zhang Zhenqiu.FloatBoost Learning and Statistical Face Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(9):1112-1123.
  • 6Wu Bo,Ai Haizhou,Huang Chang.Fast Rotation Invariant Multi-view Face Detection Based on Real Adaboost[C]//Proc.of IEEE Conference on Automatic Face and Gesture Recognition,2004:79-84.
  • 7Schapire R E,Singer Y.Improved Boosting Algorithms Using Confidence-rated Predictions[J].Machine Learning,1999,37(3):297-336.

同被引文献84

引证文献12

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部