期刊文献+

基于DSP的SPM反馈控制器设计 被引量:1

Design of Feedback Controller for SPM Based on DSP
下载PDF
导出
摘要 反馈是扫描探针显微镜控制的核心技术,但目前SPM通常使用基于模拟电路的反馈,因而基于数字信号处理器的数字反馈控制器具有较高的实用价值。该文设计了一种基于DSP的SPM数字反馈控制器,并介绍了其软硬件的设计及算法的改进。测试表明,该反馈控制器功能正常,稳定性和灵活性比模拟反馈控制器有较大的提高。 The feedback controller is a core technique of a scanning probe microscope(SPM), but the feedback of SPM using at the present time is usually based on analog circuit, therefore a feedback based on digital signal processor(DSP) possesses high practical value. Through analyzing of an analog feedback, a digital feedback based on DSP and related hardware and software are developed while the improved algorithm is presented. Experimental tests show that the feedback controller can supply various functions correctly, at the same time, the stability and flexibility of the feedback controller are improved obviously.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第3期275-277,共3页 Computer Engineering
基金 广东省资助纳米重大专项(01-09080-4202372 2005A10703001) 广州市资助科技攻关项目(2003Z2-D2021)
关键词 扫描探针显微镜 反馈 控制器 数字信号处理 Scanning probe microscope (SPM) Feedback Controller: Digital signal processing (DSP)
  • 相关文献

参考文献4

  • 1Meyer E,Hug H J,Bennewitz R.Scanning Probe Microscopy[M].Springer,2003-04.
  • 2陈成钧 华中一.扫描隧道显微学引论[M].北京:中国轻工业出版社,1996..
  • 3Morgan B A,Stupian G W.Digital Feedback Control Loops for Scanning Tunneling Microscopes[J].Rev.Sci.Instrum.,1991,62(12).
  • 4Scholl D,Everson M P,Jaklevic R C.Improved Scanning Tunneling Microscope Feedback for Investigation of Surfaces with Micron-scale Roughness[J].Rev.Sci.Instrum.,1992,69(9).

共引文献3

同被引文献11

  • 1Stem J E, Terris B D, Mamin H J, et al. Deposition and imaging of localized charge on insulator surfaces using a force microscope [J]. Applied Physics Letters(S0003-6951), 1988, 53(26): 2717-2719.
  • 2Nonnenmaccher M, Oboyle M P, Wickramasinghe H K. Kelvin probe force microscopy [J]. Applied Physics Letters (S0003-6951), 1991, 58(25): 2921-2923.
  • 3Zereck U, Loppacher C, Otto T, et al. Kelvin probe force microscopy of C60 on metal substrates: towards molecular resolution [J]. Nanotechnology(S0957-4484), 2007, 18(8): 084006.
  • 4Gaillard N, Gros-Jean M, Mariolle D, et al. Method to assess the grain crystallographic orientation with a submicronic spatial resolution using Kelvin probe force microscope [J]. Applied Physics Letters (S0003-6951), 2006, 89(15)- 154101.
  • 5Garcia R, Henuzo E T. The emergence of multi-frequency force microscopy [J]. Nature Nanoteehnology(S 1748-3395), 2012, 7(4): 217-226.
  • 6Stark R W, Naujoks N, Stemmer A. Multi-frequency electrostatic force microscopy in the repulsxve regime [Jl. Nanoteehnology(S0957-4484), 2007, 18(6): 065502.
  • 7Palacios-Lid6n E, P6rez-Garca B, Colchero J. Enhancing dynamic scanning force microscopy in air: as close as possible [J]. Nanoteehnology(S0957-4484), 2009, 20(8): 085707.
  • 8DING Xidong, AN Jin, XU Jianbin, et al. Improving lateral resolution of electrostatic force microscopy by multi-frequency method under ambient conditions [J]. Applied Physies Letters(S0003-6951), 2009, 94(22): 223109.
  • 9Rave U, Janser K, Arnold W. Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment [J]. Review of Scientific Instruments(S1089-7623), 1996, 67(9): 3281-3293.
  • 10Takahashi T, Kawamukai T. Phase detection of electrostatic force by AFM with a conductive tip [J]. Ultramicroseopy(S0304-3991), 2000, 82(1/4): 63-68.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部