期刊文献+

基于支持向量机的实时路面检测算法 被引量:2

Real-time Road Detection Algorithm Based on Support Vector Machines
下载PDF
导出
摘要 二阶多项式核函数支持向量机分类决策函数可以表示为待分类向量各分量的形式,其中的同类项可以合并,同类项的系数在得到支持向量后可以计算得出。使用这样的分类决策函数,可以避免分类时待分类向量和各个支持向量逐个进行的运算,使分类计算速度和支持向量个数无关。针对实际道路图像的对比实验表明,采用这种新算法的支持向量机路面检测分类器,在路面检测精度上优于神经网络,在计算速度上也能很好地满足实时检测的要求。 For a two order polynomial kernel function based support vector classifier, the classifying function can be written in the form of the vector's components with the similar terms combined. When the support vectors are got, the numerical coefficient of those terms can be calculated. Classifying an unknown class vector by such a classifying function, the calculation between each support vector and the vector to be classified can be avoided, which means that the speed of classification is independent of the number of support vectors. Experiments with real road images show that such a support vector classifier is superior to the neural nets in preciseness for road detection, and the classifying speed can meet the real-time computing need well.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第4期225-227,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60675019)
关键词 支持向量机 图像 检测 Support vector machines Image Detection
  • 相关文献

参考文献6

  • 1Conrad P,Foedisch M.Performance Evaluation of Color Based Road Detection Using Neural Nets and Support Vector Machines[C]//Proc.of the 32nd Applied Imagery Pattern Recognition Workshop.2003-10:157.
  • 2Burges C J C.Simplified Support Vector Decision Rules[C]//Proc.of the 13th International Conference on Machine Learning.1996:71.
  • 3Downs T,Gates K E,Masters A.Exact Simplification of Support Vector Solutions[J].Journal of Machine Learning Research,2002,2:293.
  • 4Zhan Yiqiang,Shen Dinggang.Design Efficient Support Vector Machine for Fast Classification[J].Pattern Recognition,2005,38(1):157.
  • 5Lee Y J,Mangasarian O L.RSVM:Reduced Support Vector Machines[D].Tech Rep:00207,Data Mining Institute,Computer Sciences Department,University of Wisconsin,2000.
  • 6Bi Jinbo,Chen Yixin,Wang J Z.A Sparse Support Vector Machine Approach to Region-based Image Categorization[C].Proc.of the International Conference on Computer Vision and Pattern Recognition.2005-06:1121.

同被引文献17

  • 1侯德鑫,曹丽.一种基于视频图像的道路检测方法[J].仪器仪表学报,2006,27(z1):324-325. 被引量:8
  • 2李青,郑南宁,马琳,程洪.基于主元神经网络的非结构化道路跟踪[J].机器人,2005,27(3):247-251. 被引量:18
  • 3刘加海,白洪欢,黄微凹.基于彩色和边缘信息融合的道路分割算法[J].浙江大学学报(工学版),2006,40(1):29-32. 被引量:13
  • 4梁靓,黄玉清.融合Canny算子和形态学方法的路径识别[J].计算机工程,2006,32(21):200-202. 被引量:15
  • 5Fernandez J, Casals A.Autonomous navigation in ill-structured outdoor environment[C]//Proceedings of 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, Grenoble, 1997 : 395-400.
  • 6He Yinghua,Wang Hong,Zhang Bo.Color-Based road detection in urban traffic scenes[J].IEEE Transactions on Intelligent Transportation Systems,2004,5 (4) : 309-318.
  • 7Wu Xiaowen, Peng Yuxin, Ding Donghua.Color vision-based multi-level analysis and fusion for road area detection{C]// IEEE Intelligent Vehicles Symposium,Eindhoven,2008:602-607.
  • 8Hoiem D,Efros A A,Hebert M.Geometric context from a single image[C]//Proceedings of 10th IEEE International Conference on Computer Vision, Beijing, 2005 : 654-661.
  • 9Cour T,Benezit F, Shi J.Spectral segmentation with multiscale graph decomposition[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, san Diego, 2005:1124-1131.
  • 10Shen X,Dietlein C R, Grossman E, et al.Detection and segmentation of concealed objects in terahertz images[J].IEEE Transactions on Image Processing,2008,17(12) :2465-2475.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部