期刊文献+

基于BP神经网络的车身U形类冲压件成形回弹预测 被引量:7

Prediction of Springback Value for U Shaped Parts in the Stamping Process of Auto Body Panel Based on BP Neural Network
下载PDF
导出
摘要 基于MATLAB平台,将BP神经网络和数值模拟技术应用于冲压回弹预测中。采用三层BP神经网络建立基于变压边力的回弹预测数学模型,由正交实验法安排模拟实验组合,采用有限元软件进行冲压过程的数值模拟,并把端点处的Z向回弹量作为模型目标值。将模拟结果作为神经网络的输入样本对训练网络并建立网络知识源,得到了输入为工艺参数、输出为冲压回弹量的神经网络模型,并通过检验样本检验了ANN模型的准确性。实验表明:将神经网络与正交实验、数值模拟三者结合用于板料冲压参数优化可以明显缩短优化工艺参数的时间,提高工艺设计效率,同时在数值模拟实验次数一定的条件下,能获得比单纯使用正交实验和数值模拟方法更为精确的结果。 BP artificial neural network and FEM simulation were applied to optimize the design for the prediction of springback value in the stamping process based on MATLAB.A three-layer neural network was used to set up mathematical model for springback prediction based on variable pressure-pad-forces.Orthogonal test was arranged for numerical simulation to get Z-displacement at the endpoint,which was used as the target value of the model.The neural network was trained by the above Z-displacement values to form knowledge source,and the general optimal solution was attained through genetic algorithm.Nonlinear relationship between stamping process parameters and quantity of springback was obtained through the neural network,whose accuracy was testified by the test samples.The work performed in this paper shows that the combination of network,orthogonal test and numerical simulation may obviously reduce the time of optimizing process parameters and improve the process design efficiency.At the same time,on condition that the time of numerical simulation is available,the more precise conclusion can be obtained.
出处 《西华大学学报(自然科学版)》 CAS 2007年第3期12-14,共3页 Journal of Xihua University:Natural Science Edition
基金 国家自然科学基金资助项目(No.50275100) 四川重点科技攻关项目(No.03GG010-002)资助
关键词 冲压成形 回弹 数值模拟 BP神经网络 stamping springback numerical simulation BP artificial neural network
  • 相关文献

参考文献6

二级参考文献16

  • 1[1]Michael J Saran,Mahmoud Y Demeri.Formability improvements via variabale binder pressure[A].Aotomotive Engineering International[C],1998.101-103.
  • 2[2]M A Ahmetoglu,T Alant and G L Kinzel.Improvement of part quality in stamping by controlling BHF and pressure[J].Matterials Processing Technology,1993,33:195-214.
  • 3[3]K Manabe,et al.Artificial intelligence identification of process parameters and adaptive control system for deep-drawing process[J].Matterials Processing Technology,1998,80-81:421-426.
  • 4E Doege, N Sommer. Blank-holder pressure and blankholder layout in deep drawing of thin sheet metal, Advanced technology of plasticity, Proceeding of the second intemational conference on technology of plasticity,1987, 1305.
  • 5M Ahmetoglu, T R Broek, G Kinzel, et al. Control of blank holder force to eliminate wrinkling and fracture in deep drawing rectangular parts, Annals of the CIRP, 1995, 44, 247.
  • 6S Kohara. Forming limit curves of aluminum and aluminum alloy sheets and effects of strain path on the curves. Journal of materials processing technology,1993,38,723.
  • 7Alejandro Graf , William Hansford. The influence of strainpath changes on forming limit diagrams of A16111-T4, International journal of mechanical sciences. 1994, 36, 879.
  • 8Siguang xu, Klaus J weinmarm. Prediction of forming limit curves of sheet metals using Hill's 1993 userfriendly yield criterion of anisotropic materials, International journal of mechanical sciences. 1998,40,913.
  • 9Yu-wei Wang, S Ali Sacedy, S A Majlessi, J E Beard. Strain path effects on the modified FLD caused by variable blank holder force. SAE Trans. of Materials & Manufacturing, 1995, (No.950695):522-531.
  • 10Wagoner R H, He N. Springback simulation in sheet metal forming. Proceedings of the 3rd International Conference and Workshop on Numerical Simulation of 3-D Sheet Metal Forming Processes, Dearborn-Michigan,1996.

共引文献47

同被引文献28

  • 1兰凤崇,陈吉清,林建国,于雪.U形件拉深成形回弹影响因素的计算机仿真(英文)[J].塑性工程学报,2004,11(5):78-84. 被引量:18
  • 2徐久成,沈钧毅,安秋生,李乃乾.基于信息粒度与粗糙集的决策细化研究[J].西安交通大学学报,2005,39(4):335-338. 被引量:3
  • 3龙仕彰,胡树根,宋小文.基于人工智能的冲压件回弹控制系统[J].轻工机械,2007,25(3):81-84. 被引量:3
  • 4王秀凤.板料成形CAE设计及应用[M].北京:北京航空航天大学出版社,2008.
  • 5Pawlak Z. Rough sets [J]. International Journal of Computer and Information Sciences, 1982, 11:341 -356.
  • 6LIU Y C. The effect of restraining force on shape deviation in flanged channels[J].Journal Engineering Materials Technology, 1988, 110: 389- 394.
  • 7Takeo Nakagawa. Recent developments in auto body panel forming technology [J]. Journal of Material Processing Technology, 1994,46:277-290.
  • 8Naceur H,Delamziere A,Batoz J L,et ol. Some improvements on the optimum process design in deep drawing using the inverse appr-oach[J]. J Mater Process Tech, 2004,146:250-62.
  • 9陈靖芯.蔡兰.基于BP神经网络的车身钣金件冲压成形回弹预测[D].上海:中周科学院上海冶金研究所,2000.
  • 10Guus,Schreiber,等.知识工程和知识管理[M].史忠植,梁永全,吴斌,等,译.北京:机械工业出版社,2003.

引证文献7

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部