期刊文献+

非线性抛物型方程反问题的一种新算法 被引量:1

A New Numerical Method for Inverse Problems of Nonlinear Parabolic Equations
下载PDF
导出
摘要 利用反问题新算法—时间域正演反演法研究非线性抛物型方程的逆时反问题。该方法处理反问题的主要思路是先求解相对应的正问题,获得解在特定时间网格处的近似值;然后构造一个合适的全纯映射,在象空间中获得解在时间网格对应点处的近似值;最后利用解析函数的唯一延拓性质实现反问题的逆时间反演。数值模拟例子说明了方法的有效性。 An inverse problem for backward nonlinear parabolic equations is investigated. The inverse problem is solved by a new problem-solving approach, forward-backward algorithm in time domain. At first, the corresponding forward problem is discussed, and its approximate value is obtained in specific time grid. Then a suitable holomorphic mapping is constructed, and the corresponding approximate value is obtained in image space. Finally, the backward inversion of the inverse problem is realized by the uniqueness of analytic extension. And the numerical example demonstrates that the given method is effective.
出处 《东华理工学院学报》 2007年第2期196-200,共5页 Journal of East China Institute of Technology
基金 国家自然科学基金(10561001) 江西省自然科学基金(0511005) 东华理工大学校长基金(DHXK0701)
关键词 非线性抛物型方程 反问题 时间域正演反演算法 全纯映射 数值算法 nonlinear parabolic equations inverse problem forward-backward algorithm in time domain holomorphic mapping numerical algorithm
  • 相关文献

参考文献8

  • 1[6]Bebernes J,Eberley D.1989.Mathematical problem from combustion theory[J].Appl.Math.Sci.,83,Springer-Verlag.
  • 2[7]Friedman A,Mcleod B.1985.Blow-up of positive solutions of semilinear heat equations[J].Indiana Univ.Math.,34:425-447.
  • 3[8]Fujita H.1966.On the blowing up of solutions of the Cauchy problem for[J].Fac.Sci.Univ.Tokyo Sect.I,13:109-124.
  • 4[9]Kametaka Y.1976.On the nonlinear diffusion equation of Kolmogorov-Petrovskii-Piskunov type[J].Osaka J Math,13:11-66.
  • 5[10]Marban J M,Palencia C.2002a.On the Numerical Recovery of a Holomorphic Mapping from a Finite Set of Approximate Values[J].Numer.Math,91:57-75.
  • 6[11]Marban J M,Palencia C.2002b.A New Numerical Method for Backward Parabolic Problems in The Maximum-Norm Setting[J].SIAM J.Numer.Anal.,40(4):1405-1420.
  • 7[12]Quarteroni A,Valli A.1997.Numerical Approximation of Partial Differential Equations[M].Berlin:Springer -Verlag.
  • 8[13]Rosenblum M,Rovnyak J.1994.Topics in Hardy Classes and Univalent Functions[M].Berlin:Birkhauser Verlag.

同被引文献21

  • 1Ockendon J R, Howison S D, Lacey A A, et al. Applied Partial Diiferential Equations[M]. Revised Edition. Oxford. Oxford Unversity Press, 2003.
  • 2Ndayirinde I, Malfliet W. New special solutions of the brusselator reaction model[J]. Phys. A.. Math. Gen, 1997, 30: 5151--5157.
  • 3Ablowitz M J, Clarkson P S. Nonlinear Evolution and Inverse Seatting[M]. New York, Cambridge University Press, 1991.
  • 4Constantin P, Foias C, Nieolaenko B. Integral Manifolds and Inertial Manifolds for Dissipative PDEs[M]. New York: Springer-Verlag, 1989.
  • 5Marban J M, Palencia C. A new numerical method for backward parabolic problems in the maximum-norm setting[J]. SIAM J Numer Ana, 2002, 140: 1405--1420.
  • 6Quan P H, Trong D D. A nonlinearly backward heat problem: uniqueness, regularization and error estimate[J]. Applicable Analysis, 2006, 85(6/7): 641--657.
  • 7Mizoguehi N, Yanagida E. Critical exponents for the blow-up of solutions with sign changes in a semilinear parabolic equation[J]. Math Ann, 1997, 307: 663--675.
  • 8Moehizuki K, Suzuki R. Critical exponent and critical blow up for quasilinear parabolic equations[J]. Israel J Math, 1997, 98: 141--156.
  • 9Bandl C, Levine H A, Zhang Q S. Critical exponents of Fujita type for inhomogeneous parabolic equations and systems [J]. J Math Anal Appl, 2000, 251: 624--648.
  • 10Zhang Q S. A critical behavior for semilinear parabolic equations involving sign changing solutions[J]. Nonlinear Analysis, 2002, 50: 967--980.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部