摘要
设(Xt)t>0是Lévy过程,(ε,D(ε))为其联系的狄氏型;对任意的u∈D(ε),设Ntu为u(Xt)-u(X0)的Fukushima分解中的零能量连续可加泛函.本论文主要研究了广义Feynman-Kac半群Ttf(x)=Ex[ef(Xt)],得到当u的能量测度μ<u>属于Hardy类且Hardy类系数大于0小于12时,(Tt)t≥0是强连续半群,并且得到了其对应的二次型表达式.
Let x be a Lévy process and (ε,D (ε)) be the Dirichlet form associated with it. For u∈D (ε), u has a quasicontinuous version μz and μ(Xt ) has Fukushima's decomposition :μ(Xt ) -μ(X0) = M^u + Nt^u, where Mt^u is the martingale part and Nt^u is the zero energy part. In this paper we study the generalized Feynman-Kac semigroup Tf(x) = Ex^Nt^wf(Xt )] for f∈(R^d ) 1 When μ〈u〉 which is the energy measure of u belongs to Hardy class with the constant 0 〈δμ〈u〉 〈1/2, we prove that (Tt) t〉0 is strongly continuous semigroup and identify the quadratic form associated with it.
出处
《海南师范学院学报(自然科学版)》
2007年第2期111-115,共5页
Journal of Hainan Normal University:Natural Science