期刊文献+

偶数阶三点边值问题的多个对称正解

Multiple Symmetric Positive Solutions to Even Order Three point Boundary value problems
下载PDF
导出
摘要 讨论了偶数阶三点边值问题:(-1)my(2m)=f(t,y),0≤t≤1,u(t)=u(1-t),αiu(2i)(0)-βiu(2i)(1)=γiu21,0≤i≤m-1.对称正解的存在性条件.借助于Leggett-Williams不动点定理,建立了该问题存在三个及任意奇数个对称正解的充分条件. This paper discusses the existence of positive solution to the following even order boundary value problem(-1)my(2m)=f(t,y),0≤t≤1,u(t)=u(1-t),αiu^(2i)(0)-βiu^(2i)(1)=γiu(1/2),0≤i≤m-1. Sufficient conditions are obtained for existence of three or arbitrary odd symmetric positive solutions of the above problem by using LeggettWilliams fixed point theorem.
出处 《兰州工业高等专科学校学报》 2007年第2期6-10,共5页 Journal of Lanzhou Higher Polytechnical College
基金 国家自然科学基金资助项目(10571078) 兰州大学理论物理与数学纯基础科学基金资助项目(Lzu05003)
关键词 对称正解 不动点 边值问题 symmertic positive solution cone fixed point boundary value problem
  • 相关文献

参考文献9

  • 1Avery R I, Chyan C J, Henderson J ,Twin solutions of boundary value problems for ordinary differential equations and finite difference equations[ J], Computers Math Appl,2001,42:696 - 704.
  • 2Avery R I and Henderson J,Three symmetric positive solutions for a second order boundary value problem[J] .Appl Math Lett,2000 (13):1-7.
  • 3Avery R I, Davis J M, Henderson J, Three symmetric positive solutions for Lidstone Problems by a generalization of the Leggett - Williams theorem[J] .Elec J Diff Eqs,2000(40):1 - 15.
  • 4Chyan C J, Henderson J, Multiple solutions for 2m^th - order Sturm- Liouville boundary value problems[J]. Computers Math Appl, 2000(40) :231 - 237.
  • 5Erbo L H ,Tang M, Existence and multiplicity of positive solutions to nonlinear boundary value problems[ J]. Diff Eqs Dyn Sys, 1996 (4) :313 - 320.
  • 6Henderson J,Thompson H B, Multiple symmetric positive solutions for a second order boundary value problem[ J]. Proc Amer Math Soc ,2000(128) :2373 - 2379.
  • 7Wang H, On the existence of positive solutions for semilinear elliptic equations in the annulus[ J]. Diff Eqs, 1994 (109) :1 - 7.
  • 8Wong P J Y, Triple positive solutions of conjugate boundary value problems[ J ]. Computers Math Appl, 1998 ( 36 ) : 19 - 35.
  • 9Deimling K, Nonlinear Functional Analysis[ M ]. Springer, New York, 1985.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部