摘要
讨论了偶数阶三点边值问题:(-1)my(2m)=f(t,y),0≤t≤1,u(t)=u(1-t),αiu(2i)(0)-βiu(2i)(1)=γiu21,0≤i≤m-1.对称正解的存在性条件.借助于Leggett-Williams不动点定理,建立了该问题存在三个及任意奇数个对称正解的充分条件.
This paper discusses the existence of positive solution to the following even order boundary value problem(-1)my(2m)=f(t,y),0≤t≤1,u(t)=u(1-t),αiu^(2i)(0)-βiu^(2i)(1)=γiu(1/2),0≤i≤m-1. Sufficient conditions are obtained for existence of three or arbitrary odd symmetric positive solutions of the above problem by using LeggettWilliams fixed point theorem.
出处
《兰州工业高等专科学校学报》
2007年第2期6-10,共5页
Journal of Lanzhou Higher Polytechnical College
基金
国家自然科学基金资助项目(10571078)
兰州大学理论物理与数学纯基础科学基金资助项目(Lzu05003)
关键词
对称正解
锥
不动点
边值问题
symmertic positive solution
cone
fixed point
boundary value problem