期刊文献+

基于二度量的单播最短路径算法 被引量:3

Algorithm for Two-metric Unicast Shortest Path
下载PDF
导出
摘要 随着网络应用的日趋复杂,多度量的网络描述也在增多。针对网络的二度量单播最短路径问题,结合适当的路径长度判定函数,该文提出了一种能保持路径计算过程中的真实状态的新算法,不必预先进行处理,计算过程中通过判定函数来减少搜索空间,从而减少计算量,具有良好的可扩展性,可扩展到多度量模式。 With the increased complexity of network applications, the demand for multi-metric network description is increased too. Combined with a suitable path-length decision function, a new algorithm is proposed for the two-metric unicast shortest path (TWUSP) problem. The functions of this algorithm include: keeping the real state during computing, without any pretreatment; reducing the search space by decision function, and reducing computation load; having good scalability to multi-metric.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第5期89-90,共2页 Computer Engineering
基金 高校博士学科点专项科研基金资助项目(20030290003)
关键词 最短路径 二度量单播最短路径问题 路径长度 Shortest path Two-metric unicast shortest path (TWUSP) problem Path-length
  • 相关文献

参考文献4

  • 1Jaffe J M.Algorithms for Finding Paths with Multiple Constraints[J].Networks,1984,14:95-116.
  • 2Mieghem P,Kuipers F A.On the Complexity of QoS Routing[J].Comput.Commun.,2003,26(4):376-387.
  • 3Korkmaz K,Krunz M.Multi-constrained Optimal Path Selection[C]//Proc.of the IEEE INFOCOM'01 Conference,Anchorage,Alaska.2001.
  • 4Liu G,Ramakrishnan K G.A Prune:An Algorithm for Finding K Shortest Paths Subject to Multiple Constraints[C]//Proc.of the IEEE INFOCOM'01 Conference,Anchorage,Alaska.2001.

同被引文献20

  • 1Lu Feng,Zhou Chenghu,Wan Qing.AN OPTIMUM VEHICULAR PATH ALGORITHM FOR TRAFFIC NETWORK BASED ON HIERARCHICAL SPATIAL REASONING[J].Geo-Spatial Information Science,2000,3(4):36-42. 被引量:4
  • 2李元臣,刘维群.基于Dijkstra算法的网络最短路径分析[J].微计算机应用,2004,25(3):295-298. 被引量:70
  • 3邓磊,吴健,张昌利,马满福.电子政务中跨域可信数据交换模型设计与实现[J].计算机工程,2007,33(12):4-6. 被引量:6
  • 4Sanguthevar R. Efficient parallel hierarchical-clustering algorithms[J]. IEEE Transactions on Parallel and Distributed Systems, 2005, 16(6) :497 - 502.
  • 5Kanungo T, Mount D M, Netanyahu N, et al. Alocal search approximation algorithm for K-means clustering[J]. Computational Geometry: Theory and Applications, 2004, 28:89 - 112.
  • 6Dan K, Sepandar D K, Christopher D M. From instancelevel constraints to space-level constraints: making the most of prior knowledge in data clustering, CA 94305-9040[R]. Stanford, USA: Department of Computer Science, Stanford University, 2003.
  • 7Fraley C, Raftery A E. How many clusters? which clustering method? answers via model-based cluster analysis [J ]. The Computer Journal, 1998, 41 : 578 - 588.
  • 8Cherkassky B V,Goldberg A V,Radzik T. Shortest paths algo-rithms :theory and experimental evaluation [ J ]. Mathematicalprogramming, 1996,73:129—174.
  • 9Hbfner P,Moller B. Dijkstra,Floyd and Warshall meet Kleene[J]. Formal aspects of computing,2012,24(4-6) :459-476.
  • 10王志和,凌云.Dijkstra最短路径算法的优化及其实现[J].微计算机信息,2007,23(33):275-277. 被引量:43

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部