期刊文献+

基于蚁群信息素的遗传操作算法 被引量:3

The Genetic Operating Based on the Pheromone of Ant Colony in the Genetic Algorithm
下载PDF
导出
摘要 在遗传操作算法中通常是随机选择交叉和变异的基因位置。基于蚁群信息素和选择基因的概率,本文提出了一种选择基因的方法以提升局部最优化的性能和加速算法的收敛。通过求解旅行商问题(TSP)的仿真实验,表明了这种方法的有效性。 It is a normal way to randomly select crossover and mutation gene locus in genetic operating. In this paper, based on the pheromone of Ant Colony and the probability of selecting gene, a method to select gene is presented to raise the performance of local optimization and the speed of the algorithm convergence. The efficiency of the method has been shown by simulative experiments solving the Traveling Salesman Problems (TSP).
出处 《计算机科学》 CSCD 北大核心 2007年第6期170-173,共4页 Computer Science
关键词 遗传算法 蚁群算法 全局最优化 信息表 旅行商问题(TSP) Genetic algorithms, Ant colony algorithm, Global optimization, Pheromone, Traveling salesman problems (TSP)
  • 相关文献

参考文献7

  • 1Dorigo M,Maniezzo C A.The ant system:optimization by a colony of cooperating agents.IEEE Trans.on System,Man and Cybernetics,1996,26(1):1~13
  • 2Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem.IEEE Trans.on Evolutionary Computation,1997,1(1):53~66
  • 3张应辉 王兴伟 刘积仁 李华天.遗传算法中一种有效的自适应概率参数模型[J].清华大学学报:自然科学版,1998,38(2):110-113.
  • 4丁建立,陈增强,袁著祉.遗传算法与蚂蚁算法的融合[J].计算机研究与发展,2003,40(9):1351-1356. 被引量:287
  • 5Pilat M L,White T.Using genetic algorithms to optimize ACS TSP.In:Proceedings of Ant Algorithms:3th International Workshop,ANTS 2002,Brussels,Belgium,2002.282~287
  • 6孙力娟,王良俊,王汝传.改进的蚁群算法及其在TSP中的应用研究[J].通信学报,2004,25(10):111-116. 被引量:38
  • 7TSPLIB[EB/OL].http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html,2003

二级参考文献18

  • 1Marco Dorigo, Gambardella, Luca Maria. Ant colonies for the traveling salesman problem. Biosystems, 1997, 43(2): 73~81.
  • 2Marco Dorigo, Gambardelh, Luca Maria. Ant colony system: A cooperative learning approach to the traveling salesaum problem. IEEE Trans on Evolutionary Computation, 1997, 1(1) : 53~66.
  • 3Marco Dorigo, Eric Bonabeau, Theranlaz Guy. Ant algorithms and stigmergy. Future Generation Computer System, 2000, 16(8) : 851~871.
  • 4Thomas Stutzle, Holger H Hoos et al. MAX-MIN ant system. Future Generation Computer System, 2000, 16(8) : 889~914.
  • 5Marcus Randall, Andrew Lewis. A parallel implementation of ant colony optimization. Journal of Parallel and Distributed Computing, 2002, 62(9): 1421~1432.
  • 6DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the ttraveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997,1(1): 53-66.
  • 7DORIGO M, MANIEZZO V, COLORNI A. The ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics,1996,26(1):1-13.
  • 8PILAT M L, WHITE T. Using genetic algorithms to optimize ACS-TSP[A]. Proceedings of Ant Algorithms: Third International Workshop, ANTS 2002[C]. Brussels, Belgium, 2002. 282-287.
  • 9WHITE T, PAGUREK B, Oppacher F. ASGA: Improving the ant system by integration with genetic algorithms[A]. Proceedings of the Third Annual Genetic Programming Conference[C]. Morgan Kaufmann, 1998. 610-617.
  • 10STUTZLE T, HOOS H H. MAX-MIN ant system[J]. Future Generation Computer System, 2000, 16(8): 889-914.

共引文献321

同被引文献34

引证文献3

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部