期刊文献+

基于ICA与MViSOM的孤立点挖掘模型

Outlier Mining Model Based on ICA and MViSOM
下载PDF
导出
摘要 本文提出了一种基于独立成分分析(ICA)与改进的可视化诱导自组织映射(MViSOM)的孤立点挖掘模型——IMVOM模型,该模型用ICA方法对观测到的多维随机向量进行独立成分分解,得到一个独立成分数据集,然后用改进的MViSOM方法取得数据的可视化。该模型充分结合“人类擅长于模式识别的能力”与“电脑擅长于大量地记忆、快速地计算的能力”的双方优点进行孤立点的挖掘,避免了对高维数据内部结构的复杂探测,从而克服了高维数据集孤立点挖掘过程中的一些困难。实验结果也验证了所提模型的合理性。 IMVOM,Outlier Mining Model Based on ICA & MViSOM, is presented in this paper. This model firstly transforms an observed multidimensional random vector into mutually independent components by ICA, and then achieves visibility of high-dimensional data by MViSOM. Combined the pattern recognition capacity of human being with the calculating capacity of computer, this model can finish mining the outliers by avoiding of detecting the complex inner structure of data and overcoming some difficulties of outlier mining of high-dimensional data. In the end, the proposed model's correctness and reasonableness are also validated by the experiment results in this paper.
出处 《计算机科学》 CSCD 北大核心 2007年第6期197-199,共3页 Computer Science
基金 国家自然科学基金项目(10371135)资助。
关键词 孤立点 ICA MViSOM Outlier, ICA( independent component analysis), MViSOM (Modified Visualization-Induced Self-Organizing Maps)
  • 相关文献

参考文献14

  • 1Liu X.Strategies for outlier analysis.Birkbeck College University of London,2000
  • 2Johanna H,Rocke D.Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator.Computational Statistics & Data Analysis,2004,44:625~638
  • 3Bayarri M J,Morales J.Bayesian measures of surprise for outlier detection.Journal of Statistical Planning and Inference,2003,111:3~22
  • 4Kantardzic M.Data Mining Concepts,Models,Methods,and Algorithms.Tsing hua University Press,2003
  • 5De Groot P J,Postma G J,et al.Application of principal component analysis to detect outliers and spectral deviations in near-field surface-enhanced Raman spectra.Analytica Chimica Acta,2001,446:71~83
  • 6Jutten C,Herault J.Independent component analysis versus PCA.In:Proceeding of European Signal Processing Conf.1988.287~314
  • 7Kocsor A,Csirik J.Fast Independent Component Analysis in Kernel Feature Spaces.LNCS,2001,2234:271~281
  • 8Kohonen T.Self-organizing maps.3rd ed.Berlin Heidelberg New York:Springer,2001
  • 9Yin H.ViSOM--a novel method for multivariate data projection and structure visualization.IEEE Transaction on Neural Networks,2002,1:237~243
  • 10Yin H.Data visualization and manifold mapping using the ViSOM.Neural Networks,2002,15:1005~1016

二级参考文献26

  • 1彭红毅,朱思铭,蒋春福.数据挖掘中基于ICA的缺失数据值的估计[J].计算机科学,2005,32(12):203-205. 被引量:9
  • 2彭红毅,蒋春福,朱思铭.基于ICA与SVM的孤立点挖掘模型[J].计算机科学,2006,33(9):175-177. 被引量:7
  • 3Liu Xiao-Hui.Strategies for outlier analysis.Birkbeck College University of London,2000
  • 4Edwin M K,Raymond T Ng.Algorithm for Mining Distance-Based Outliers in Large Databases.In:Proc.of the 24th VLDB Conf.New York,USA,1998
  • 5Johanna H,Rocke D M.Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator.Computational Statistics & Data Analysis,2004,44:625~638
  • 6Ester M,et al.A Density-Based Algorithm for Discovering Clusters in large spatial databases.In:Proc.of 2nd Intl.Conf.on Knowledge Discovery and Data Mining,1996
  • 7Bayarri M J,Morales J.Bayesian measures of surprise for outlier detection.Journal of Statistical Planning and Inference 2003,111:3~22
  • 8Bullen R J,et al.Outlier detection in scatterometer data:neural network approaches.Neural Networks (in press)
  • 9Kantardzic M.Data Mining Concepts,Models,Methods,and Algorithms.Tsinghua University Press,2003
  • 10De Groot P J,Postma G J,et al.Application of principal component analysis to detect outliers and spectral deviations in near-field surface-enhanced Raman spectra.Analytica Chimica Acta,2001,446:71~83

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部