期刊文献+

基于索引数组与集合枚举树的最大频繁项集挖掘算法 被引量:4

A Maximal Frequent Itemset Mining Algorithm Based on Index Array and Set-Enumeration Tree
下载PDF
导出
摘要 由于其内在的计算复杂性,挖掘密集型数据集的全部频繁项集非常困难,解决方案之一是挖掘最大频繁项集。集合枚举树是最大频繁项集挖掘算法中常用的数据结构,最大频繁项集的挖掘过程也可以看作是集合枚举树的搜索过程。为缩小集合枚举树的搜索空间,采用宽度优先和深度优先相结合的混合搜索策略,提出了一种新的最大频繁项集的挖掘算法Index-MaxMiner。该算法首先设计了索引数组这种新的数据结构,并给出了一个基于二进制位图技术的索引数组的计算方法。通过为每个频繁项增加包含索引,Index-MaxMiner利用一次宽度优先搜索得到了候选最大频繁项集,使集合枚举树的第一层结点个数大幅度减少。然后在候选最大频繁项集中通过深度优先搜索,得到全部最大频繁项集,从而实现了集合枚举树的跳跃式搜索,大大缩小了搜索空间。实验结果表明,该算法可有效提高最大频繁项集的挖掘效率。 Because of the inherent computational complexity, mining the complete frequent itemset in dense datasets remains to be a challenging task. Mining Maximal Frequent Itemset (MFI)is an alternative to address the problem. Set-Enumeration Tree (SET)is a common data structure used in several MFI mining algorithms. For this kind of algorithrns, the process of mining MFI can also be viewed as the process of searching in SET. To reduce the search space of SET, in this paper, a new algorithm, Index-MaxMiner, for mining MFI is proposed by employing a hybrid search strategy blending breadth-first and depth-first combined. Firstly, the "index array" is proposed, and by using bitmap, an algorithm for computing index array is presented. By adding subsume index to frequent items, Index-MaxM/ner discovers the candidate MFIs using breadth-first search at one time. By doing so, the number of nodes in the first level of SET is reduced greatly. Then, for candidate MFIs, depth-first search strategy is used to generate all MFIs. Thus, the jumping search in SET is implemented, and the search space is reduced greatly. The experimental results show that the proposed algorithm outperforms similar state-of-the-art algorithms.
出处 《计算机科学》 CSCD 北大核心 2007年第7期146-149,共4页 Computer Science
基金 国家科技成果重点推广项目计划(2003EC000001)资助
关键词 数据挖掘 关联规则 最大频繁项集 索引数组 集合枚举树 Data mining, Association rule, Maximal frequent itemset, Index array, Set-enumeration tree
  • 相关文献

参考文献9

  • 1Ceglar A, Roddick JF. Association Mining. ACM Computing Surveys, 2006, 38 (2): 1-42
  • 2Rigoutsos L, FloratosA. Combinatorial PattemDiscovery in Biological Sequences: The Teiresias Algorithm. Bioinformatics, 1998, 14 (1), 55-67
  • 3Bayardo RJ. Efficiently Mining Long Patterns from Databases. In: Haas LM, Tiwary A,eds. Proceedings ACM SIGMOD International Conference on Management of Data, 1998. 85-93
  • 4Lin DI, Kedem ZM. Pincer-Search.. A New Algorithm for Discovering the Maximum Frequent Set. In: Schek HJ, et al. , eds. Proceedings of 6th International Conference on Extending Database Technology, 1998. 105-119
  • 5Agarwal RC, Aggarwal CC, Prasad VVV. Depth First Generation of Long Patterns. In: Ramakrishnan R, Stolfo S,eds. Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Disfovery and Data Mining,.2000:108-118.
  • 6Burdick D, Calimlim M, Gehrke J. MAFIA.. A Maximal Frequent Itemset Algorithm for Transactional Databases. In: Georgakopoulos D et al, eds. Proceedings of the 17th International Conference on Data Engineering, 2001. 443-452
  • 7Gouda K, Zaki MJ. Efficiently Mining Maximal Frequent Itemsets.In: Cercone N, Lin TY, Wu XD, eds. Proceedings of the 2001 IEEE International Conference on Data Mining, 2001. 163-170
  • 8李庆华,王卉,蒋盛益.挖掘最大频繁项集的并行算法[J].计算机科学,2004,31(12):132-134. 被引量:5
  • 9Frequent hemset Mining Implementations Repository. http://fimi. cs. helsinki.fi/

二级参考文献6

  • 1Burdick D, Calimlim M, Gehrke J. MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases. In: Proc.of 17th Intl. Conf. on Data Engineering, Heidelberg, Germany,April 2001. 443-452
  • 2Gouda K, Zaki M J. Efficiently Mining Maximal Frequent Itemsets. In: Proc. of 2001 IEEE Intl. Conf. on Data Mining (ICDM'01), San Jose, California, November 2001. 163-170
  • 3Wang Hui, Li Qinghua, Ma Chuanxiang, Li Kenli. A Maximal Frequent Itemset Algorithm. Lecture Notes in Computer Science,Springer, 2003,2639: 484-490
  • 4Agrawal R, Shafer J C. Parallel Mining of Association Rules.IEEE Transaction On Knowledge And Data Engineering, Dec.1996,8(6): 962-969
  • 5Zaki M J, Parthasarathy S, Ogihara M, Li Wei. New Parallel Algorithms for Fast Discovery of Association Rules. Data Mining and Knowledge Discovery: An International Journal. special issue on Scalable High-Performance Computing for KDD, Dec. 1997, 1(4) :34
  • 6Zaki M J. Parallel and Distributed Association Mining: A Survey.IEEE Concurrency, 1999,7(4): 14-25

共引文献4

同被引文献45

  • 1颜跃进,李舟军,陈火旺.基于FP-Tree有效挖掘最大频繁项集[J].软件学报,2005,16(2):215-222. 被引量:68
  • 2焦学磊,王新庄.基于矩阵的频繁项集发现算法[J].江汉大学学报(自然科学版),2007,35(1):43-46. 被引量:6
  • 3王黎明,赵辉.基于FP树的全局最大频繁项集挖掘算法[J].计算机研究与发展,2007,44(3):445-451. 被引量:16
  • 4高宏宾,潘谷,黄义明.基于频繁项集特性的Apriori算法的改进[J].计算机工程与设计,2007,28(10):2273-2275. 被引量:25
  • 5AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases [ C ]//Proc of ACM SIGMOP Conference on Management of Data. New York: ACM Press, 1993: 207-216.
  • 6HAN Jia-wei, PEI Jian, YIN Yi-wen. Mining frequent patterns without candidate generation [ J ]. ACM SIGMOD Record, 2000,29 (2) :1-12.
  • 7ZAKI M J. Scalable algorithms for association mining[ J]. IEEE Trans on Knowledge Data Engineering, 2000,12(3) :372-390.
  • 8XIN Dong, HAN Jia-wei, YAN Xi-feng, et al. On compressing frequent patterns[J]. Data & Knowledge Engineering ,2007,60(1) : 5-29.
  • 9ORLANDO S, LUCCHESE C, PALMERINI P,et al. KDCI:a multistrategy algorithm for mining frequent sets [ C ]//Proc of ICDM Workshop on Frequent Itemset Mining Implementations. Plorida: [ s. n. ], 2003.
  • 10RACZ B. Nonordfp: An FP-growth variation without rebuilding the FP-tree[ C]//Proc of ICDM Workshop on Frequent hemset Mining Implementations, 2004.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部