期刊文献+

在VPRS模型中保持边界的属性约简方法研究 被引量:1

Research on Approximation Operator in Generalized Variable Precision Rough Set Model
下载PDF
导出
摘要 讨论了变精度粗糙集模型中现有的属性约简方法,找出了β约简的不足;介绍了Inuiguchi提出的保持决策类下近似,上近似,边界和无法预言区的属性约简定义;说明了保持下近似的属性约简就是β下分布约简,保持上近似属性约简就是β上分布约简;提出了变粗度粗糙集模型中基于边界的属性约简方法,并从理论上证明了它的正确性;最后,给出了该种方法的实现算法。经实例证明,该方法操作简单,具有很高的应用价值。 Attribute reduction approaches at hand in variable precision rough set model are discussed, the shortages of reduct are found. Definitions of attribute reduction for preserving lower approximations, upper approximations, boundary regions and unpredictable region proposed by Inuiguchi are introduced. That attribute reduction approach of preserving lower approximations in β lower distribution reduction and approach of preserving upper approximations is β upper distribution reduction are demonstrated. Attribute reduction approach boundary regions-preserved in variable precision rough set model is proposed and its correctness is proved from theoretical. Finally, the algorthm of this approach is given The experiments show that this approach operates simply and it has better applied value.
出处 《计算机科学》 CSCD 北大核心 2007年第7期168-170,共3页 Computer Science
基金 国家自然科学基金资助项目(批准号:60474022)
关键词 变精度粗糙集模型 属性约简 边界 算法 Variable precision rough set model, Attribute reduction,Boundary regions, Algorithm
  • 相关文献

参考文献7

  • 1Pawlak Z. Rough sets[J]. International journal of Information & Computer Science, 1982, 11(5) :341-356
  • 2刘清.Rough集及Rough推理[M].北京:科学出版社,2003..
  • 3Ziarko W. Variable precision rough set model. Journal of computer system science, 1993, 46(1) :39-59
  • 4陶志,许宝栋,汪定伟,李冉.基于可变精度粗糙集理论的粗糙规则挖掘算法[J].信息与控制,2004,33(1):18-22. 被引量:25
  • 5Beynon M. Reducts within the variable precision rough sets model: A further investigation[J].European journal of operational research, 2001, 134:592-605
  • 6Inuiguchi M. Seeral approaches to attribute reduction in ariable precision rough set mode[A].In:Proceeding of Modeling Decisions for Artificial Intelligence[C].MDAI2005, Springer-Verlag, 2005. 523-528
  • 7Qin Keyun, Pei Zheng, Du Weifeng. The relationship among several knowledge reduction approaches[A]. In: Proceedings of the 2nd international conference on fuzzy systems and knowledge discovery[C]. FSKD2005, ChangSha, 2005.8, Berlin: Spinger, 2005,1:1232-1241

二级参考文献1

共引文献65

同被引文献8

  • 1Delgado M. Martin-Bautista M J, Sanchez D, et al. Mining text data: special features and patterns [C]. ESF Exploratory Workshop,London, 2002.
  • 2Friedman N,Geiger D,Goldszmidt M. Bayesian Network Classifiers [J]. Machine I earning,1997,29(2) :131-163.
  • 3PAWLAK Z. Rough sets [J]. International Journal of Information and Computer Sciences,1982,11(5) :341-383.
  • 4黄麟.智能计算[M].重庆:重庆大学出版社,2004:30-45.
  • 5何才望.变精度粗糙集模型在数据挖掘中的研究[D].长沙:长沙理工大学,2007.
  • 6Ziarko W. Variable precision rough set model[J]. Journal of Computer and System Science, 1993,46 (1) :39-59.
  • 7Slezak D, Ziarko W. Attribute reduction in the Bayesian Version of Variable precision rough set model [J]. Theoretical Computer Science,2003(4) : 1 -11.
  • 8Slezak D,Ziarko W. The Investigation of the Bayesian Rough Set Model[J]. International Journal of ApProximate Reasoning, 2005,40 (1) :81-91.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部