摘要
在稀疏规则库条件下,当给定的输入落入规则"间隙"时,采用传统的模糊推理方法是得不到任何结论的。模糊推理本质上就是插值器。Koczy和Hirota首先提出了KH线性插值推理方法,然而推理结果存在着无法保证凸性和正规性等问题。为了能有一个较好的插值推理结果,本文提出了一种基于几何参数的模糊拉格朗日插值推理方法,该方法不仅推理简单,推理结果较好,并且能很好地保证推理结果的凸性和正规性。这为智能系统中的模糊推理提供了一个非常有用的工具。
When rule base is sparse, we cannot get any reasoning result by traditional fuzzy reasoning method for an observation is in the gap between two neighboring antecedents. Fuzzy reasoning is really equal to a interpolation. Hence Koczy and Hirota first proposed KH linear interpolative reasoning method. But its consequence does not always keep convexity and normality. So a fuzzy lagrange's interpolative method based geometric parameter is presented. Reasoning is simple by the method; moreover it can keep the convexity of the reasoning consequence.
出处
《计算机科学》
CSCD
北大核心
2007年第7期200-202,共3页
Computer Science
基金
国家科技部高新技术计划项目(2005EJ000017)
河北省科技研究与发展计划(02547015D)
河北省普通高等学校博士科研资助基金
2002(B2002118)
关键词
模糊集
拉格朗日插值
稀疏规则库
模糊推理
Fuzzy set, Lagrange's interpolative reasoning, Sparse fuzzy rule base, Fuzzy reasoning