期刊文献+

卫星系统中的混沌控制 被引量:1

Control of Chaotic Oscillations of a Satellite
下载PDF
导出
摘要 对于非线性扰动系统对指令信号的跟踪问题,提出解析条件和实现方法.对在反馈中包含线性动力和非线性两部份的非线性扰动设备进行了研究,设备的非线性部份和扰动是未知的但是有界的.提出控制卫星天平动角的算法,用图示对该算法作了说明. Analytical conditions and practical methods of their realization are proposed to solve a problem of a command signal tracking for a nonlinear disturbed system. Nonlinear disturbed plants consisting of linear dynamic block and nonlinear block in feedback were considered. Nonlinear part of the plant and disturbance are unknown and bounded. A possibility of applications of proposed algorithms to control libration angle of satellite was illustrated.
机构地区 圣彼得堡信息学
出处 《应用数学和力学》 CSCD 北大核心 2007年第7期798-804,共7页 Applied Mathematics and Mechanics
基金 RFBR基金资助项目(N06-01-08038-ofi)
关键词 卫星系统 混沌控制 信号跟踪 天平动 satellite control of chaotic signal tracking libration angle of satellite
  • 相关文献

参考文献9

  • 1Andrievskii B R, Fradkov A L. Control of chaos: methods and applications-Ⅰ :Methods[J]. Automation and Remote Control ,2003,64(5) :673-713.
  • 2Andrievskii B R, Fradkov A L. Control of chaos: methods and applications-Ⅱ: Applications [ J ]. Automation and Remote Control, 2004,65(4) : 505-533.
  • 3Fradkov A L, Pogromsky A Yu. Methods of nonlinear and adaptive control of chaotic systems[ A]. In: 13 th Triennial World Congress IFAC[ C ]. San Francisco, USA: IEEE, 1996, 185-190.
  • 4Evans R J, Fradkov A L. Control of chaos: some open problems[ A]. In: Proceedings of the 40th IEEE Conference on Decision and Control[ C]. Vol 1. Orlando, Florida, USA: IEEE, 2001,698-703.
  • 5CHEN Li-qun, LIU Yan-zhu. Chaotic attitude motion of a magnetic rigid spacecraft and its control[J]. Interna J Non-Linear Mechanics ,2002,37(3) :493-504.
  • 6LIU Yan-zhu, YU Hong-jie, CHEN Li-qun. Chaotic attitude motion and its control of spacecraft in elliptic orbit and geomagnetic field[J]. Acta Astronautica, 2004,55 ( 319 ) : 487-494.
  • 7Bobtsov A A, Nikolaev N A. Design of the control of nonlinear systems with functional and parametric uncertanties[J]. Automation and Remote Control ,2005,66( 1 ) : 108-118.
  • 8Fradkov A L. Synthesis of adaptive system of stabilization of linear dynamic plants[ J]. Automation and Remote Control, 1974,35(12) : 1960-1966.
  • 9Fradkov A L, Miroshnik I V, Nikiforov V O. Nonlinear and Adaptive Control of Complex System [M] .Dordrecht: Kluwer Academic Publishers, 1999.

同被引文献22

  • 1胡满峰,徐振源.两个模态耦合的Ginzburg-Landau方程的时空混沌同步化[J].应用数学和力学,2006,27(8):1001-1008. 被引量:2
  • 2Ott E, Grebogi C, Yorke J A. Using chaos to direct trajectories to targets[ J]. Phys Rev Lett, 1990, 65(26) : 3215-2158.
  • 3Pourmahmood M, Khanmohammadi S, Alizadeh G. Synchronization of two different uncer- tain chaotic systems with unknown parameters using a robust adaptive sliding mode controller [J]. Commun Nonlinear Sci Numer Simulat, 2011, 16(7) : 2853-2868.
  • 4Aghababa M P, Khanmohammadi S, Alizadeh G. Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique[J]. Appl Math Model, 2001. 30(6) ~ 3080-3091.
  • 5Chen H K. Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damp- ing [ J ]. J Sound Vibr, 2002, 255 (4) : 719-740.
  • 6van Dooren R, CHEN Hsien-keng. Comments on chaos and chaos synchronization of a sym- metric gyro with linear-plus-cubic damping[J]. J Sound Vibr, 2008, 268(3) : 632-634.
  • 7Ge Z M, Chen H K. Bifurcations and chaos in a rate gyro with harmonic excitation [ J ]. J Sound Vibr, 1996, 194( l ) : 107-117.
  • 8Tong X, Mrad N. Chaotic motion of a symmetric gyro subjected to a harmonic base excitation [ J ]. J Applied Mech Trans Amer Soc Mech Eng, 2001, 68 ( 4 ) : 681-684.
  • 9Leipnik R B, Newton T A. Double strange attractors in rigid body motion with linear feedback control[J]. Phys Lett A, 1981, 86(2): 63-67.
  • 10Ge Z M, Chen H K, Chen H H. The regular and chaotic motion of a symmetric heavy gyro- scope with harmonic excitation[J]. J Sound Vibr, 1996, 198(2) : 131-147.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部