期刊文献+

加权ebyev-Ostrowski型不等式

Weighted ebyev-Ostrowski Type Inequalities Involving Functions Whose First Derivatives Belong to a Spaces of the Functions
下载PDF
导出
摘要 关于著名的ebyev不等式,已有众多的研究成果.通过建立积分不等式,来建立全新的加权ebyev型积分不等式.给予了独立的证明,并给出了此类不等式的新评价. On account of the famous Cebysev inequality, a rich theory has appeared in some literature. Some new weighted Cebysev type integral inequalities via certain integral inequalities for functions whose first derivatives belong to a space of the functions are established. The proofs are of independent interest and provide new estimates on these types of inequalities.
出处 《应用数学和力学》 CSCD 北大核心 2007年第7期805-810,共6页 Applied Mathematics and Mechanics
关键词 Cebysev不等式 函数空间 绝对连续函数 权函数 Cebysev type inequality space of the function absolutely continuous function weight function
  • 相关文献

参考文献14

  • 1Cebysev P L. Sur les expressions approximatives des integrals par les auters prises entre les memes limites[J]. Proc Math Soc Charkov , 1882,2:93-98.
  • 2Pecatic J E, Porchan F, Tong Y. Convex Functions, Partial Orderings and Statistival Applications[M]. San Diego: Academic Press, 1992.
  • 3Dragomir S S, Rassias Th M. Ostrowski Type Inequalities and Applications in Numerical Integration [ M]. USA: Springer, 2002, 504.
  • 4Heing H P, Maligranda L. Cebysev inequality in function spaces[J]. Rea/Analysis Exchange, 1991/ 1992,17(1) :211-247.
  • 5Kwong M K, Zettl A. Norm Inequalities for Derivatives and Differnce[M]. New York/Berlin : Springer-Verlag, 1980.
  • 6Mitrinovic D S, Pecaric J E, Fink A M. Classical and New Inequalities in Analysis [ M ]. Dordrecht: Kluwer Academic Publishers, 1993.
  • 7Pachpatte B G. On Trapezoid and Gruss like integral inequalities[J].Tamkang J Math,2003,34(4) : 365-369.
  • 8Pachpatte B G. On Ostrowsld-Gruss-Cebysev type inequalities for functions whose modulus of derivatives are convex[J]. J Inequal Pure Appl Math, 2005,6(4):128.
  • 9Pachpatte B G. On Cebysev type inequalities involving functions whose derivatives belong to Lp spaces[J]. J Inequal Pure Appl Math,2006,7(2) : 58.
  • 10Varosanec S. History, generalizations and applied unified treatments of two Ostrowski inequalities [J]. J Inequal Pure Appl Math,2004,5(2):23.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部