期刊文献+

一类拟线性Schrdinger方程 被引量:1

On a Class of Quasilinear Schrdinger Equations
下载PDF
导出
摘要 在二维空间中讨论一类拟线性Schrdinger方程,该方程在物理学上描述了吸引玻色-爱因斯坦凝聚.通过建立这个方程的性质,运用能量方法,证明了该方程所对应的初值问题的解在一定条件下爆破.同时利用变分方法,也得到了整体解存在的一个充分条件,该条件与一个经典的椭圆方程的基态有关. A type of quasilinear Schroedinger equations in two dimensions are discussed, which describe attractive Bose-Einstein Condensates in physics. By establishing the property of the equation and applying the energymethod, was proved the blowup of the solutions to the Cauchy problem for the equation under certain conditions. At the same time, by the variational method, the a sufficient condition of global existence was got, which is related to the ground state of a classical elliptic equation.
出处 《应用数学和力学》 CSCD 北大核心 2007年第7期877-882,共6页 Applied Mathematics and Mechanics
基金 四川省教育厅资助科研项目
关键词 拟线性Schroedinger方程 爆破 整体解 基态 玻色-爱因斯坦凝聚 quasilinear Schroedinger equations blow up global solution ground state Bose-Einstein condensates
  • 相关文献

参考文献22

  • 1Laedke E W, Spatschek K H, Stenflo L. Evolution theorem for a class of perturbed envelope soliton solutions[J]. J Math Phys, 1983,24(12) :2764-2769.
  • 2De Bouard A, Hayashi N, Saut J C. Global existence of small solutions to a relativistic nonlinear Schrodinger equation[J]. Comm Math Phys, 1997,189(1) :73-105.
  • 3Nakamura A. Damping and modification of exciton solitary waves[ J]. J Phys Soc Japan, 1977,42 (6) : 1824-1835.
  • 4Porkolab M, Goddman M V. Upper-hybrid solitons and oscillating two-stream instabilities[J]. Phys Fluids, 1976,19(6) : 872-881.
  • 5Quispel G R W, Capel H W. Equation of motion for the Heisenberg spin chain[J]. Physica A, 1982, 110(1/2) :41-80.
  • 6Takeno S, Homma S. Classical planar Heisenberg ferromagnet, complex scalar fields and nonlinear excitations[ J]. Progr Theoret Physics, 1981,65( 1 ) : 172-189.
  • 7Hasse R W. A general method for the solution of nonlinear soliton and kink Schrodinger equations[J].Z Physik B, 1980,37( 1 ) : 83-87.
  • 8Makhankov V G, Fedyanin V K. Non-linear effects in quasi-one-dimensional models of condensed matter theory[J]. Physics Reports, 1984,104( 1 ) : 1-86.
  • 9Poppenberg M. Smooth solutions for a class of fully nonlinear Schrodinger type equations[ J]. Nonlinear Analysis TMA,2001,45(6) :723-741.
  • 10Poppenberg M. On the local well posedness of quasi-linear Schrodinger equations in arbitrary space dimension[ J]. J Differnatial Equations ,2001,172( 1 ) :83-115.

共引文献2

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部