期刊文献+

一种处理高阶面元法中奇异积分的方法

A scheme dealing with the singular integrals in high order panel method
下载PDF
导出
摘要 对高阶面元法中奇异积分问题进行数值研究,根据面元的大小以及面元到场点的距离,把整个曲面积分分为远场、近场两类,分别对其使用不同的方法以处理Rankine源项所引起的积分奇异问题,对三维球体、椭球体进行数值计算,将结果与解析解和其他方法的计算值的比较表明此计算方法是有效的。 A numerical scheme is developed for the singular integrals in high order panel method. Considering the singularity of the integrand due to the Rankine terms, the integrals are classed into two categories according to the characteristic length of the panel and its distance to the field point: the far-field and near-field integrals. Different methods are applied for different cases to deal with the singular integrals. The numerical resuits for three-dimensional sphere and ellipsoids are compared with the analytical results and other numerical results, showing that the present method is valid.
出处 《船海工程》 北大核心 2007年第3期34-37,共4页 Ship & Ocean Engineering
基金 国家自然科学基金资助项目(10572094) 上海市自然科学基金资助项目(06ZR14050)
关键词 RANKINE源 奇异积分 高阶面元法 Rankine source singular integral high order panel method
  • 相关文献

参考文献5

  • 1Hess J L,Smith A M.Calculation of nonlifting potential flow about arbitrary three-dimensional smooth bodies[J].Journal of Ship Research,1964(7):22-44.
  • 2Maniar H D.A three dimensional higher order panel method based on B-splines[D],MIT,Massachusetts,1995.
  • 3Danmeier D G.A Higher-Order Panel Method for Larger-Amplitude Simulation of Bodies in Waves[D].MIT,Massachusetts.1999.
  • 4Lee C H,Newman J N,Solution of Radiation Problems with Exact Geometry,Proc.of 16th International Workshop on Water Wavers and Floating Bodies[C],Hiroshima,Japan,2001:93-96.
  • 5Telles J C F,Oliveira R F.Third degree polynomial transformation for boundary element integrals:Further improvement[J].Engineering Analysis with Boundary Elements,1994(13):135-141.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部