期刊文献+

关于Browder-Hartman-Stampacchia变分不等式 被引量:1

On Browder-Hartman-Stampacchia variational inequalities
下载PDF
导出
摘要 本文是利用Yosida近似和预解式研究Browder-Hartman-Stampacchia变分不等式在没有紧性甚至没有连续性条件下的解的存在性。 Browder-Hartman-Stwnpacchia variational inequalities for set-valued monotone operators are studied without the compactness and even without continuity condition. An existence theorem of solution of the inequalities is discussed by using the Yosida approximant and the resolvent.
作者 熊归凤
出处 《南昌航空工业学院学报》 CAS 2007年第1期1-4,共4页 Journal of Nanchang Institute of Aeronautical Technology(Natural Science Edition)
基金 南昌航空大学科研基金项目(EC200707019)
关键词 Yosida近似 预解式 Browder-Hartman-Stampacchia变分不等式 极大单调映射 Yosida approximant resolvent Broader-Hartman-Stampacchia variational inequality maximal monotone mapping
  • 相关文献

参考文献6

  • 1Shih M.H.and Tan.K.K.Browder-Hartman-Stampacchia variational inequalities for multi-valued monotone operators.J.Math.Anal.Appl.134 (1988)431-440.
  • 2J.L.Lions and G.Stampacchia.Variational inequalities.commu Pure Applied Math.V.20(1967).493-519.
  • 3P.Hartman and G.Stampacchia.On Some nonlinear elliptic differential functional-equations.Acta Math.115(1966),271-310.
  • 4F.E.Browder.A new generalization of the schauder fixed point Theorem.Math.Ann.174(1967),285-290.
  • 5J.L.Lions.Optiomal control of systems governed by partial differential equatiOns.SpringerVerlag.Berlin.1971.
  • 6Barbu.V.and Precupanu TH.Convexty and optimization in Banach spaces.University of Jussy.Romania.1978.

同被引文献14

  • 1Pohozaev S. The Sobolev embedding in the special case pi : n [ C ]. Proceedings of the Technical Scientific Conference onAdvances of Scientific Research 1964 - 1965, Mathematics Sections, Moscow: Moskov. Energet. Inst., 1965,158 - 170.
  • 2Trudinger N S. On embedding into Orlicz spaces and some applications[ J]. Journal of Applied Mathematics and Mechanics,1967,17:473 -484.
  • 3Moser J. A sharp form of an inequality by N. Trudinger[ J]. Indiana University Mathematics Journal, 1971,20: 1077 - 1091.
  • 4Adams D R. A sharp inequality of J. Moser for higher order derivatives[ J]. Annals of Mathematics,1998,128:385 -398.
  • 5Chen W X. Li C. M. Methods on nonlinear elliptic equations [ M ]. American Institute of Mathematical Sciences, 2010,127-151.
  • 6Zhao L, Chang Y Y. Min-max level estimate for a singular quasilinear polyharmonic equation in R2m [ J]. Journal of DifferentialEquations,2013,254:2434 - 2464.
  • 7Lam N, Lu G Z. Existence of nontrivial solutions to polyharmonic equations with subcritical and critical exponential growth[ J].Discrete Continuous Dynamical Systems, 2012,32 : 2187 - 2205.
  • 8Reichel W, Weth W. Existence of solutions to nonlinear subcritical higher order elliptic Dirichlet problems [ J ]. Journal ofDifferential Equations,2010,248 : 1866 - 1878.
  • 9Ruf B,Sani F. Sharp Adams-type inequalities in iT[ J] . Transactions of the American Mathematical Society,2013 ,365 :645 -670.
  • 10Lam N, Lu G Z. Sharp Adams type inequalities in Sobolev spaces lFm,n/m {Rn ) for arbitrary integer m [ J ]. Journal ofDifferential Equations ,2012,253 : 1143 - 1171.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部