期刊文献+

磁通量对二维谐振子的量子能级密度的影响(英文) 被引量:1

Effect of a magnetic flux line on the quantum level density of a harmonic oscillator
下载PDF
导出
摘要 利用周期轨道理论,我们计算了在不同情况下,一个粒子在二维谐振子势中存在和不存在磁通量时的量子能级密度.重点讨论了磁通量对量子能级密度的影响.计算结果表明:当二维谐振子势的频率比值是有理数时,量子能级是分立的,能级密度中的每一条峰正好对应一个量子能级.然而,当频率比是无理数时,能级密度发生振荡,当加上磁通量后,振荡减小.这可以看作是Aharonov-Bohm效应的结果. Using the periodic orbit theory, we computed the quantum level density of a particle in the two-dimensional harmonic oscillator potential with and without the magnetic flux line for different cases. Especially discuss the influence of the magnetic flux line on the quantum level density. The results show when the frequency ratio of the two-dimensional harmonic potential is a rational number, the quantum level density is discrete. Each peak in the level density corresponds to one energy. However, when the frequency ratio is an irrational number, the level density is oscillating, when the magnetic flux is added, the amplitude of the oscilla- tion decreased. This can be considered as a consequence of Aharonov-Bohm effect.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2007年第4期750-756,共7页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金(10604045) 鲁东大学博士科研启动基金(202-23000301)
关键词 周期轨道理论 量子能级密度 Aharonov—Bohm效应 periodic orbit theory, quantum level density, aharonov-Bohm effect
  • 相关文献

参考文献10

  • 1Gutzeiller M C.Periodic orbits and classical quantization conditions[J].J.Math.Phys.,1971,12:343.
  • 2Gutzeiller M C.Chaos in classical and quantum mechanics[M].New York:Springer,1990.
  • 3Du M L,Delllos J B.Effect of closed classical orbits on quantum speed:ionization of atoms in a magnetic field[J].Phys.Rew.A,1988,38:1896.
  • 4Mao J M,Shaw J,Delos J B.Closed orbits and semielassieal wave.functions in two-dernensional Hamiltonian systems[J].J.Star.Phys.,1992,68:51.
  • 5Brack M,Jain S R.Analytical tests of Gutzwiller's trace formula for harmonic-oscillator potentials[J].Phys.Rev.A,1995,51:3462.
  • 6Creagh S C,Robbins J M,Littlejoin R G.Geometrical properties of Maslov indices in the semiclassieal trace formula for the density of states[J].Phys.Rev.A,1990.42:1907.
  • 7Brack M.Man3-body physics[M].Singapore:World Scientific,1994.
  • 8Magner A G.ShEll phenomena in mesoe,copic systems:frow nuclei to quantum dots[J].Sow.J.Nucl.Phys.,1978,28:1477.
  • 9Aharonov Y,Bohm D.Significance of electromagnetic potentials in the quantum theory[J].Phys.Rev.,1959,115:485.
  • 10Wang D H,Feng Y Y,Wang M S,et al.Quantum spectra and classical periodic orbits in a rectangular billiard[J].J.At.Mol.Phys.,2007,24(3):523.

同被引文献13

  • 1丁朝华,赵翠兰,肖景林.GaAs抛物量子线中弱耦合极化子的磁场效应[J].原子与分子物理学报,2007,24(3):629-633. 被引量:10
  • 2Dingle R, Wiegmann W, Henry C H. Quantum states of confined carriers in very thin AlxGa1-x As-GaAs- AlxGa1-xAs heterostructures [J]. Phys. Rev. Lett. , 1974, 33:827
  • 3Kouwenhoven L P, Austing D G, Tarucha S. Fewelectron quantum dot [J]. Rep. Prog. Phys., 2001, 64:701
  • 4Weis J, Haug R J, Klitzing K yon, et al. Transport spectroscopy on a single quantum dot [ J ]. Semicond. Sci. Technol. , 1994, 9:1890
  • 5Reimann S M, Manninen M. Electronic structure of quantum dot [J]. Rev. Mod. Phys., 2002, 74:1283
  • 6Wagner M, Merkt U, Chaplic A V. Spin-singlet-spintriplet oscillations in quantum dot [J]. Phys. Rev. B, 1992, 45:1951
  • 7Dippl O, Schmelcher P, Cederbaum L S. Charged anisotropic harmonic oscillator and the hydrogen atom in crossed fields [J]. Phys. Rev. A, 1994, 49:4415
  • 8Merkt U, Huser J, Wagner M. Energy spectra of two electrons in a harmonic quantum dot [J]. Phys. Rev. B, 1991, 43:7320
  • 9Taut M. Two electrons in a homogeneous field: particular analytical solutions [J]. J. Phys. A, 1994, 27:1045
  • 10Trickey S B, Zhu W. Analytical solutions for two electrons in an oscillator potential and a magnetic field [J]. Phys. Rev. A, 2005, 72:022501

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部