期刊文献+

20~6000K温度范围内二氧化碳配分函数的计算(英文) 被引量:9

Total internal partition sums for the carbon dioxide in the temperature range 20~6000K
下载PDF
导出
摘要 在20~6000K温度范围内,通过乘积近似计算了二氧化碳及其同位素的总的配分函数,其中振动配分函数用谐振子近似,转动配分函数考虑了离心扭曲修正.20-6000K温度范围被划分为五个小区间.在每一个小区间,计算的总的配分函数被拟合到一个温度T的四阶或五阶多项式,从而获得五个或六个拟合系数.通过这些拟合系数可以快速准确的获得分子在所研究温度范围内任意温度下的总配分函数. The total internal partition functions have been calculated for temperatures from 20- 6000 K for CO2 and it' s isotopomers. The temperature range is divided into five regions and the calculated TIPS are fit to a three-order or four-order polynomial expression in T, and the coefficients are evaluated in five temperature regions. This allows a rapid and accurate calculation of the total internal partition functions at the temperature from 20-6000 K.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2007年第3期647-652,共6页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金(10676025) 高等学校博士点专项科研基金(20050610010) 贵州省教育厅自然科学基金(黔教科20062041) 四川省教育厅青年基金(2005B022)
关键词 总配分函数 二氧化碳 转动配分函数 振动配分函数 total internal partition sums, carbon dioxide, rotational partition sums, vibrational partition sums
  • 相关文献

参考文献19

  • 1Gamache R R,Hawkins R L,Rothman L S.Total internal partition sums in the temperature range 70~3000 K:atmospheric linear molecules[J].J.Mol.Spectrosc.,1990,142:205
  • 2Gamache R R,Kennedy S,Hawkins R L,et al.Total internal partition sums for molecules in the terrestrial atmosphere[J].J.Mol.Struct.,2000,517/518:407
  • 3Fischer J,Gamache R R.Total internal partition sums for molecules of astrophysical interest[J].JQSRT,2002,74:263
  • 4Fischer J,Gamache R R,Goldman A,et al.Total internal partition sums for molecular species in the 2000 edition of the HITRAN database[J].JQSRT,2003,82:401
  • 5Rothman L S,Barbe A,Chris Benner D,et al.The HITRAN molecular spectroscopic database:edition of 2000 including updates through 2001[J].JQSRT,2003,82:5
  • 6Rothman L S,Jacquemart D,Barbe A,et al.The HITRAN 2004 molecular spectroscopic database[J].JQSRT,2005,96:139.
  • 7McDowell R S.Rotational partition functions for linear molecules[J].J.Chem.Phys.,1988,88:356
  • 8McDowell R S.Rotational partition functions for sym-metric-top molecules[J].J.Chem.Phys.,1990,93:2801
  • 9Watson J K G.The asymptotic asymmetric-top rotational partition function[J].Mol.Phys.,1988,65:1377
  • 10Martin J M L,Francois J P,Gijbels R.The rotational partition function of the symmetric top and the effect of K doubling thereon[J].Chem.Phys.Lett.,1991,187:375

同被引文献124

引证文献9

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部