期刊文献+

回旋速调管输入耦合器分析与设计 被引量:4

Analysis and design of the input coupler of a gyroklystron
下载PDF
导出
摘要 对Ka波段工作模式为TE01模和TE02模的两种回旋速调管的输入耦合器进行了详细研究,利用模式匹配理论和HFSS建模仿真计算了内圆柱腔和外同轴腔的尺寸;提出了一种与软件计算相结合的模式纯度计算方法,对内腔工作模式纯度、内外腔能量分数进行了计算。内腔侧面上的耦合缝的大小、角向位置都直接决定外同轴腔内的TEm11模向内圆柱腔的TE0n1模的耦合情况。针对耦合缝与输入波导成45°和0°分布两种情况,研究了耦合缝长、宽和角向偏移,以及内外腔频差对频率、Q值及内腔能量分数的影响。分别设计了Ka波段内腔工作模式为TE011、外腔为TE411和内腔TE021、外腔TE811的两种输入耦合器,并利用矢量网络分析仪对内腔工作模式为TE011的耦合器进行了冷高频测量,测得频率为34.257 GHz,与计算结果34.300 GHz仅相差43 MHz。 The gyroklystron is a high power, high gain, and high efficiency millimeter wave amplifier. Its circuit usually comprises of 4 or 3 stagger-tuned cavities. The input coupler is the first cavity of the circuit and must exhibit reasonable coupling strength between the TE10 mode in rectangular waveguide and the desired TE011, or TE021 circular cavity mode with high purity. The theoretical analysis and HFSS simulation of the input coupler are presented. Mode matching technology is used to calculate the size of coaxial and cylindrical cavities. A new method, combining theory and HFSS, is presented to calculate the purity of working mode. Some results are obtained through the study of the orientation, width and length, angular offset of the apertures. The results show that 45° orientation is better than 0° for mode purity, the aperture length has much more influence on the coupling efficiency than width. Two couplers were designed, working in TE011 mode and TE021 mode respectively. The resonant frequency calculated deviates only 43 MHz from that measured with a network analyzer.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2007年第6期956-960,共5页 High Power Laser and Particle Beams
基金 国家863计划项目资助课题
关键词 高功率微波 回旋速调管 输入耦合器 耦合狭缝 模式纯度 High power microwave Gyroklystron Input coupler Coupler slot Mode purity
  • 相关文献

参考文献7

  • 1Garven M,Calame J P,Danly B G,et al.Experimental studies of a four-cavity,35 GHz gyroklystron amplifier[J].IEEE Trans Plasma Sci,2000,28(3):672-680.
  • 2刘濮鲲,徐寿喜.回旋速调管放大器及其发展评述[J].电子与信息学报,2003,25(5):683-694. 被引量:29
  • 3罗勇,李宏福,赵青,邓学,徐勇,王晖.回旋速调放大器输入谐振腔分析及数值模拟[J].强激光与粒子束,2004,16(3):358-362. 被引量:13
  • 4徐寿喜,刘濮鲲,张世昌.Ka波段二次谐波回旋速调管放大器输入耦合器的分析与模拟[J].强激光与粒子束,2004,16(4):477-480. 被引量:9
  • 5Neilson J M,Latham P E,Caplan M,et al.Determination of the resonant frequencies in a complex cavity using the scattering matrix formulation[J].IEEE Trans on Microwave Theory Tech,1989,37(8):1165-1169.
  • 6McCurdy A H,Choi J J.Design and analysis of a coaxial coupler for a 35 GHz gyroklystron amplifiers[J].IEEE Trans on Plasma Sci,1999,47(2):164-175.
  • 7Lawson W,Ives R L,Mizuhara M,et al.Design of a 10 MW,91.4 GHz frequency-doubling gyroklystron for advanced accelerator applications[J].IEEE Trans on Plasma Science,2001,29:545-558.

二级参考文献118

  • 1K.R.Chu,D.S.Furuno,N.C.Luhmann,Jr.,et a1.,Theory,design,and operation of large-orbit high-harmonic gyroklystron amplifiers,IEEE Trans.Oil Plasma Sci.,1985,13(6),435—443.
  • 2P.E.Latham,W.Lawson,V.Irwin,The design of a 100MW,Ku band second harmonic gyroklystron experiment,IEEE Trans.on Plasma Sci.,1994,22(5),804-817.
  • 3D.B.McDermott,C.K.Chong,N.C.Luhmann,Jr.,et a1.,High-harmonic slotted gyroklystron amplifier:linear theory and nonlinear simulation,IEEE Trans.on Plasma Sci.,1994,22(5),920-931.
  • 4J.D.Mcnally,D.B.McDermott,N.C.Luhmann,Jr.,et a1.,Third-harmonic TE411 gyroklystron amplifier,IEEE Trans.Oil Plasma Sci.,1998,26(3),496—499.
  • 5J.D.Mcnally,D.B.McDermott,Q.S.Wang,et al.,High performance,70kV third-harmonic smooth-bore gyroklystron amplifier,IEEE Trans.Oil Plasma Sci.,1994,22(5),932—938.
  • 6G.P.Saraph,W.Lawson,M.Castel,et al.,100-150MW designs of two-and three-cavity gyroklystron amplifiers operating at the fundamental and second harmonics in X-band and Kubands,IEEE Trans.Oil Plasma Sci.,1996,24(3),671—677.
  • 7I.G.Yovchev,W.G.Lawson,G.S.Nusinovich,et a1.,Present status of 17.1GHz four-cavity frequency-doubling coaxial gyroklystron design,IEEE Trans.on Plasma Sci.,2000,28(3),523—528.
  • 8M.T.Walter,G.S.Nusinovich,V.L.Granatstein,et al.,Design of a frequency-doubling,35GHz,1MW gyroklystron,IEEE Trans.Oil Plasma Sci.,2000,28(3),688-693.
  • 9G.S.Nusinovich,O.Dumbrajs,Two-harmonic prebunching of electrons in multi-cavity gyrodevices,Phys.Plasmas,1995,2(2),568—577.
  • 10G.S.Nusinovich,B.Levush,O.Dumbrajs,Optimization of multistage harmonic gyro-devices,Phys.Plasmas,1996,3(8),3133-3144.

共引文献40

同被引文献39

  • 1罗勇,李宏福.回旋速调管放大器注-波互作用分析[J].强激光与粒子束,2005,17(5):724-728. 被引量:7
  • 2徐勇,罗勇,熊彩东,刘迎辉,李宏福.回旋速调管加载损耗介质群聚腔的研究[J].强激光与粒子束,2005,17(12):1870-1874. 被引量:1
  • 3刘迎辉,李宏福,李浩,王峨锋,徐勇,王晖,王丽.具有突变结构开放腔的矩阵分析[J].物理学报,2006,55(4):1718-1723. 被引量:7
  • 4Antakov I I, Zasypkin E V, Sokolov E V, et al. 35 GHz radar gyroklystrons[C]//Proc of SPIE. 1993, 2104:338-339.
  • 5Beunas A, Marchesin R, Bellemere J C, et al. High power CW klystron for fusion experiments[J]. IEEE Trans on Electron Devices, 2009, 55(5) :864 -869.
  • 6Danly B G, Blank M, Calame J P, et al. Development and testing of a high average power 94 GHz gyroklystron[J]. IEEE Trans on Plasma Sci, 2000, 28(3):713-724.
  • 7George J L, Mai T N, Bruce G D, et al. WARLOC: A high-power coherent 94 GHz radar[J]. IEEE Trans on Aero Elect, 2008, 44(3) : 1102-1116.
  • 8Thumm M. High-power mode conversion for linearly polarized HE11 hybrid mode output[J]. Int J Electron, 1991, 61(6):1135-1153.
  • 9Li Hongfu, Thumm M. Mode conversion due to curvature in corrugated waveguides[J]. Int J Electron, 1991,71(2) :333-347.
  • 10Latham P E, Lawson W, and Irwin V. The design of a 100MW, Ku-Band second harmonic gyroklystron experiment[J]. IEEE Transactions on Plasma Science, 1994, 22(5): 804-817.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部