期刊文献+

椭圆曲线密码算法的边信道攻击研究

Study of Side-Channel Attacks for Elliptic Curve Cryptosystem Algorithm
下载PDF
导出
摘要 边信道攻击是一种对密码算法实现的有效的攻击.针对椭圆曲线密码的实现,简单边信道攻击可以逐步确定私钥.文中讨论了通过模糊私钥的标量表示和椭圆曲线计算序列的关系来抵抗简单边信道攻击.为了分析这些算法,文中提出了一种新的方法,即把椭圆曲线标量乘运算看作马尔可夫链.理论证明,这种方法比标准的简单边信道攻击更有效. Side-channel attacks are serious practical threat against implementation of cryptographic algorithms. Regarding implementation of elliptic curve cryptosystems, simple side-channel attacks (SSCA) can be used to determine the private key gradually. This paper discusses a certain class of countermeasures which try to achieve a protection against SSCA by obscuring the relationship between the digits in the digit representation of the secrete key and the sequence of elliptic curve operation. To analyze those algorithms, a new method which models point multiplication algorithms as Markov Chain is proposed in this paper. Theoretical proof shows that this method is more efficient than the normal side channel attacks.
出处 《武汉理工大学学报(交通科学与工程版)》 2007年第3期491-493,505,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目资助(批准号:60473029)
关键词 简单边信道攻击 椭圆曲线密码 马尔可夫链 simple side channel attacks elliptic curve cryptosystems markov chain
  • 相关文献

参考文献5

  • 1Neal Koblitz.The state of elliptic curve cryptogra-phy.Designs Codes and Cryptography,2000,19:173-193
  • 2Bodo MSller.Securing elliptic curve point muhipli-cation against side-channel attacks.Information Se-curity-ISC2001,Lecture Notes in Computer Sci-ence,2200.Springer,2001:324-334
  • 3Izu T,Takagi T.A fast parallel elliptic curve multi-plication resistant against side channel attacks.Pub-lie Key Cryptography,5th International Workshop on Practice and Theory in Public Key Cryptosys-tems,Lecture Notes in Computer Science,Springer,2002·2274:280-296
  • 4Oswald E,Aigner M.Randomized addition-subtrac-tion chains as a countermeasure against power at-tacks.Cryptographic Hardware and Embedded Sys-terns-CHES 2001,3th International Workshop,Paris,France,May 14-16,2001,Proceedings,Lec-ture Notes in Computer Science(LNCS),Springer,2001,2162:39.50
  • 5刘铎,戴一奇,王道顺.平稳与平衡——椭圆曲线密码体制抗旁信道攻击的策略与手段[J].计算机研究与发展,2005,42(10):1667-1672. 被引量:4

二级参考文献48

  • 1N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 1987, 48(177): 203~ 209.
  • 2V. Miller. Uses of elliptic curve in cryptography. In: Proc.CRYPTO' 85, Lecture Notes in Computer Science 218. New York: Springer Verlag, 1986. 417~426.
  • 3IEEE P1363/D9 Standard specifications for public-key cryptography. New York, USA: Institute of Electrical and Electronics Enginees, Inc. , 2001.
  • 4Recommended elliptic curves for federal government use. National Institute for Standard and Technology, 1999.
  • 5H. Silverman. The Arithmetic of Elliptic Curves, GTM106. New York: Springer-Verlag, 1986.
  • 6Henri Cohen, Atsuko Miyaji, Takatoshi Ono. Efficient elliptic curve exponentiation using mixed coordinates. In: Proc.ASIACRYPT98. New York: Springer-Verlag, 1999. 51 ~ 65.
  • 7C.H. Lim, H. S. Hwang. Fast implementation of elliptic curve arithmetic in GF(pm). In: Proc. PKC'00. New York: SpringerVerlag, 2001. 405~421.
  • 8Alfred Mezenzes. Elliptic Curve Public Key Cryptosystems.Boston: Kluwer Academic Publishers, 1993.
  • 9I. Blake, G. Seroussi, N. Smart. Elliptic Curves in Cryptography. In: London Math. Soc. Lecture Note Ser. 25.New York: Cambridge University Press, 1999.
  • 10A.J. Menezes, T. Okamoto, S. A. Vanstone. Handbook of Applied Cryptography. Boca Raton: CRC Press, 1997.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部