期刊文献+

一种具有随机变异性质的粒子群协同优化算法 被引量:1

Improved Particle Swarm Cooperative Optimization Algorithm with Stochastic Mutation
下载PDF
导出
摘要 给出了一种具有随机变异特性的改进型粒子群协同优化算法,该算法克服了传统粒子群算法易陷入局部最优解且后续迭代过程速度慢的缺点.在迭代过程中,粒子的变异概率取决于粒子的适应度值以及当前所有粒子的聚集度.通过变异,粒子可有效地探索新的空间领域,从而可以有效地避免陷入局部最优解.Benchmark函数实验结果表明,优化后的粒子群算法比传统粒子群算法具有较快的收敛速度和较高的全局收敛能力. This paper proposes an improved particle swarm cooperative optimizer with stochastic mutation (SMPSCO) to solve the problems of easily falling into local optimum solution and slow convergence speed of the traditional particle swarm optimization (PSO). During the iterating process, the mutation probability of the current particle depends on the fitness value and the gathering degree of particles. The exploration ability is efficiently improved by the mutation, and the probability of falling into local optimum is greatly decreased. The experimental results of the benchmark functions show the SMPSCO has faster convergence speed and higher global convergence ability than the traditional PSO.
出处 《重庆工学院学报》 2007年第11期79-83,共5页 Journal of Chongqing Institute of Technology
基金 国家"863"计划资助项目(2004AA1Z2420) 河南省杰出人才创新基金资助项目(0321000300)
关键词 粒子群 变异 优化 particle swarm mutation optimization
  • 相关文献

参考文献9

  • 1Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE Press, Piscataway, 1995:39 - 43.
  • 2Kennedy J, EberhartR C. Particle swarm optimization [ C ] ///Proceedings of the iE.EE International Conference on Neural Networks Ⅳ. [S.l.] : IEEE Press, Piscataway, 1995 : 1942 - 1948.
  • 3Zhang L P, Yu H J, Hu S X. Optimal choice of parameters for particle swarm optimization[J]. Journal of Zhejiang University, 2005,6 (6) : 528 - 534.
  • 4Bergh F, Engelbrecht A P. A Cooperative Approach to Particle Swarm Optimization[J]. IEEE Transactions on Evolutionary Computation, 2004,8(3) :225 - 239.
  • 5Wen Shuhua, Zhang Xueliang. A Modified Particle Swarm Optimization Algorithm [ J ]. International Conference on Neural Networks and Brain, 2005( 1 ):318- 321.
  • 6Yangmin Li, Xin Chen. A New Stochastic PSO Technique for Neural Network Training [ J ]. Springer-Vedag Berlin Heidelberg, 2006(3) :564 - 569.
  • 7李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 8赵娜,张伏生,魏平,刘学.基于改进多粒子群算法的电力系统无功优化[J].西安交通大学学报,2006,40(4):463-467. 被引量:21
  • 9Shengli Song, Li Kong. A Novel Stochastic Mutation Technique for Particle Swarm Optimization[C]//Proceedings of the First International Conference on Bio-Inspired Computing-Theory and Applications. Wuhan: [s. n.], 1995:282 - 288.

二级参考文献19

  • 1王建学,王锡凡,陈皓勇,王秀丽.基于协同进化法的电力系统无功优化[J].中国电机工程学报,2004,24(9):124-129. 被引量:76
  • 2唐剑东,熊信银,吴耀武,蒋秀洁.基于改进PSO算法的电力系统无功优化[J].电力自动化设备,2004,27(7):81-84. 被引量:46
  • 3李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 4马晋弢,杨以涵.遗传算法在电力系统无功优化中的应用[J].中国电机工程学报,1995,15(5):347-353. 被引量:144
  • 5Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 6Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.
  • 7Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001.
  • 8Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476.
  • 9Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434.
  • 10Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607.

共引文献416

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部