期刊文献+

在固液混合相区物质剪切模量的讨论

Discussion on Shear Modulus of Materials at Solid-Liquid Phase Region
下载PDF
导出
摘要 从实验和理论两个方面对处于固液相变平衡条件下物质在固液混合相区的剪切模量进行了讨论,认为物质的剪切模量在开始熔化时并不等于零。采用逾渗理论对物质在固液混合相区的固相连通性进行了计算,得到物质整体剪切模量消失的临界熔化质量分数为0.687左右。所给出的物质的熔化失稳因子F(p)能够定性的描述处于固液相变平衡条件下物质固液混合相区内相关物理参量的变化。 From theoretical and experimental aspects, the shear modulus of material at the solid-liquid phase region was discussed when the material has attained its phase transition equilibrium and conclu- ded that the shear modulus did not equal to zero as soon as the material began to melt. Using percolation theory,the connectivity of solid phase in solid-liquid phase region was calculated and the critical melting mass fraction is 0. 687 when the shear modulus of material equal to zero. The melting unstable factor of material, presented by us, can represent qualitatively the change of correlative physical parameters in melting process.
出处 《高压物理学报》 EI CAS CSCD 北大核心 2007年第2期178-182,共5页 Chinese Journal of High Pressure Physics
基金 国家自然科学基金项目(10276039)
关键词 固液混合相区 剪切模量 逾渗理论 纵波声速 体波声速 熔化失稳因子 solid-liquid phase region shear modulus percolation longitudinal sound velocity body sound velocity melting unstable factor
  • 相关文献

参考文献16

  • 1Hayes D,Hixson R S,McQueen R G.High Pressure Elastic Properties,Solid-Liquid Phase Boundary and Liquid Equation of State from Release Wave Measurements in Shock-Loaded Copper[A]//Furnish M D,Chhabildas L C,Hixson R S.Shock Compression of Condensed Matter-1999[C].New York:American Institute of Physics,2000:483-488.
  • 2李茂生,陈栋泉.高温高压下材料的本构模型[J].高压物理学报,2001,15(1):23-31. 被引量:24
  • 3Chhabildas L C,Furnish M D,Reinhart W D.Shock Induced Melting in Aluminum:Wave Profiles Measurements[A]//Furnish M D,Chhabildas L C,Hixson R S.Shock Compression of Condensed Matter-1999[C].New York:American Institute of Physics,2000:97-100.
  • 4Asay J R,Chhabildas L C,Dandekar D P.Shear Modulus of Shock-Loaded Polycrystalline Tungsten[J].J Appl Phys,1980,51(9):4774-4783.
  • 5Millett J C F,Bourne N K,Rosenberg Z,et al.Shear Strength Measurements in a Tungsten Alloy during Shock Loading[J].J Appl Phys,1999,86(12):6707-6709.
  • 6Zhou M,Clifton R J.Dynamic Constitutive and Failure Behavior of a Two-Phase Tungsten Composite[J].J Appl Mech,1997,64:487.
  • 7Huang H,Asay J R.Compressive Strength Measurements in Aluminum for Shock Compression over the Stress Range of 4~22 GPa[J].J Appl Phys,2005,98:033524.
  • 8Millett J C F,Bourne N K,Jones I P.Shear Strength Measurements in the TiAl-Based Alloy Ti-48Al-2Nb-2Cr-1B during Shock Loading[J].J Appl Phys,2001,90(3):1188-1191.
  • 9Steinberg D J,Cochran S G,Guinan M W.A Constitutive Model for Metals Applicable at High-Strain Rate[J].J Appl Phys,1980,51(3):1498-1504.
  • 10Nadal M H,le Poac P.Continuous Model for the Shear Modulus as a Function of Pressure and Temperature up to the Melting Point:Analysis and Ultrasonic Validation[J].J Appl Phys,2003,93(5):2472-2480.

二级参考文献10

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部