摘要
要给出了迹稳定秩1的C^*-代数的稳定有限性,证明了如果A是有单位元迹稳定秩1的C^*-代数,则A是稳定有限的,引入了弱迹稳定秩1的定义,并且证明了如果有单位元的C^*-代数A是迹稳定秩1的,则A是弱迹稳定秩1的.对于单的具有SP性质的有单位元的C^*-代数A,如果A是弱迹稳定秩1的,则A是迹稳定秩1的.同时给出了迹稳定秩1的C^*-代数的一个等价条件,证明了一个有单位元的可分的C^*-代数A是迹稳定秩1的,等价于A=(t4)limn→∞(An,pn),其中tsr(An)=1.
This paper gives the stable finite property of C^*-algebras with tracial stable rank one. It is showed that a unital C^*-algebra A with tracial stable rank one is stable finite, and introduces the definition of weak tracial stable rank one, and proves that if a unital C^*-algebra A with tracial stable rank one is weak tracial stable rank one, for simple unital C^*-algebra A which has SP property with weak tracial stable rank one is tracial stable rank one. The authors also give a equivalent definition on C^*-algebras with tracial stable rank one, it is showed that a separable unital C^*-algebra A with tracial stable rank one if and only if A=(t4)limn→∞(An,pn)with tsr(An)=1.
出处
《数学年刊(A辑)》
CSCD
北大核心
2007年第3期403-412,共10页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10271090)资助的项目.
关键词
C^*-代数
稳定秩1
迹稳定秩1
C^*-algebras, Stable rank one, Tracial stable rank one