期刊文献+

Normal Families and Uniqueness of Entire Functions and Their Derivatives 被引量:2

Normal Families and Uniqueness of Entire Functions and Their Derivatives
原文传递
导出
摘要 Let f be a nonconstant entire function; let k ≥ 2 be a positive integer; and let a be a nonzero complex number. If f(z) = a→f′(z) = a, and f′(z) = a →f^(k)(z) = a, then either f = Ce^λz + a or f = Ce^λz + a(λ - 1)/)λ, where C and ), are nonzero constants with λ^k-1 = 1. The proof is based on the Wiman-Vlairon theory and the theory of normal families in an essential way. Let f be a nonconstant entire function; let k ≥ 2 be a positive integer; and let a be a nonzero complex number. If f(z) = a→f′(z) = a, and f′(z) = a →f^(k)(z) = a, then either f = Ce^λz + a or f = Ce^λz + a(λ - 1)/)λ, where C and ), are nonzero constants with λ^k-1 = 1. The proof is based on the Wiman-Vlairon theory and the theory of normal families in an essential way.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第6期973-982,共10页 数学学报(英文版)
基金 the NNSF of China(Grant No.10471065) the NSF of Education Department of Jiangsu Province(Grant No.04KJD110001) the SRF for ROCS,SEM the Presidential Foundation of South China Agricultural University
关键词 entire function normal family unicity theorem entire function, normal family, unicity theorem
  • 相关文献

参考文献18

  • 1Hayman, W. K.: Meromorphic Functions, Oxford University Press, London, 1964.
  • 2Schiff, J.: Normal Families, Springer-Verlag, New York, 1993.
  • 3Yang, L.: Value Distribution Theory, Springer-Verlag, Berlin, 1993.
  • 4Jank, G., Mues, E., Volkmann, L.: Meromorphe Funktionen, die mit ihrer ersten und eweiten Ableitung einen endlichen Wert teilen. Complex Variables, 6, 51-71 (1986).
  • 5Chang, J. M., Fang, M. L.: Uniqueness of entire functions and fixed points. Kodai Math. J., 25, 309-320 (2002).
  • 6Fang, M. L., Zalcman, L.: Normal families and uniqueness theorems for entire functions. J. Math. Anal. Appl., 280, 273-283 (2003).
  • 7Gundersen, G. G., Yang, L. Z.: Entire functions that share one value with one or two of their derivatives. J. Math. Anal. Appl., 223, 88 95 (1998).
  • 8Li, P., Yang, C. C.: Uniqueness theorems on entire functions and their derivatives. J. Math. Anal. Appl., 253, 50-57 (2001).
  • 9Wang, J. P., Yi, H. X.: Entire functions that share one value CM with their derivatives. J. Math. Anal. Appl., 277, 155-163 (2003).
  • 10Yang, L. Z.: Further results on entire functions that share one value with their derivatives. J. Math. Anal. Appl., 212, 529-536 (1997).

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部