期刊文献+

A Characterization of Generalized Monotone Normed Cones

A Characterization of Generalized Monotone Normed Cones
原文传递
导出
摘要 Let C be a cone and consider a quasi-norm p defined on it. We study the structure of the couple (C, p) as a topological space in the case where the function p is also monotone. We characterize when the topology of a quasi-normed cone can be defined by means of a monotone norm. We also define and study the dual cone of a monotone normed cone and the monotone quotient of a general cone. We provide a decomposition theorem which allows us to write a cone as a direct sum of a monotone subcone that is isomorphic to the monotone quotient and other particular subcone. Let C be a cone and consider a quasi-norm p defined on it. We study the structure of the couple (C, p) as a topological space in the case where the function p is also monotone. We characterize when the topology of a quasi-normed cone can be defined by means of a monotone norm. We also define and study the dual cone of a monotone normed cone and the monotone quotient of a general cone. We provide a decomposition theorem which allows us to write a cone as a direct sum of a monotone subcone that is isomorphic to the monotone quotient and other particular subcone.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第6期1067-1074,共8页 数学学报(英文版)
基金 the Spanish Ministry of Science and Technology FEDER under Grant BFM2003-02302
关键词 quasi-norm MONOTONE CONES quasi-norm, monotone, cones
  • 相关文献

参考文献12

  • 1Fuchssteiner, B., Lusky, W.: Convex Cones, North-Holland, 1981.
  • 2Garcia Raffi, L. M., Romaguera, S., Sanchez Perez, E. A.: The bicompletion of an asymmetric normed linear space. Acta Math. Hungar, 97, 183-191 (2002).
  • 3Fletcher, P., Lindgren, W. F.: Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
  • 4Schellekens, M.: The Smyth completion: a common foundation for denotational semantics and complexity analysis, In: Proc. MFPS 11. Electronic Notes in Theoretical Computer Science, 1, 211-232 (1995).
  • 5Romaguera, S., Schellekens, M.: Quasi-metric properties of complexity spaces. Topology Appl., 98,311-322 (1999).
  • 6Garcia Raffi, L. M., Romaguera, S., Sanchez Perez, E. A.: Sequence spaces and asymmetric norms in the theory of computational complexity. Math. Comp. Model., 36, 1-11 (2002).
  • 7Garcia Raffi, L. M., Romaguera, S., Sanchez Perez, E. A.: On Hausdorff asymmetric normed linear spaces. Houston J. Math., 29, 717-728 (2003).
  • 8Garcia Raffi, L. M., Romaguera, S., Sanchez Perez, E. A.: Extensions of asymmetric norms to linear spaces. Rend. Ist. Mat. Univ. Trieste, 33, 113-125 (2001).
  • 9Alegre, C., Ferrer, J., Gregori, V.: On the Hahn-Banach theorem in certain linear quasi-uniform structures. Acta Math. Hungar, 82, 315-320 (1999).
  • 10Alimov, A.: On the structure of the complements of Chebyshev sets. Funct. Anal. Appl., 35, 176-182 (2001).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部