期刊文献+

Rigidity Theorem of Hypersurfaces with Constant Scalar Curvature in a Unit Sphere 被引量:2

Rigidity Theorem of Hypersurfaces with Constant Scalar Curvature in a Unit Sphere
原文传递
导出
摘要 In this paper, we give a characterization of tori S^1 ( √ nr+2-n/nr)×S^n-1(√ n-2/nr) and S^m ( √n/m ) ×S^n-m (√n-m/n). Our result extends the result due to Li (1996)on the condition that M is an n-dimensional complete hypersurface in Sn+1 with two distinct principal curvatures. Keywords principal curvature, Clifford torus, Gauss equations In this paper, we give a characterization of tori S^1 ( √ nr+2-n/nr)×S^n-1(√ n-2/nr) and S^m ( √n/m ) ×S^n-m (√n-m/n). Our result extends the result due to Li (1996)on the condition that M is an n-dimensional complete hypersurface in Sn+1 with two distinct principal curvatures. Keywords principal curvature, Clifford torus, Gauss equations
作者 Guo Xin WEI
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第6期1075-1082,共8页 数学学报(英文版)
关键词 principal curvature Clifford torus Gauss equations principal curvature, Clifford torus, Gauss equations
  • 相关文献

参考文献10

  • 1Cheng, S. Y., Yau, S. T.: Hypersurfaces with constant scalar curvature. Math. Ann., 225, 195-204 (1977).
  • 2Li, H.: Hypersurfaces with constant scalar curvature in space forms. Math. Ann., 305, 665-672 (1996).
  • 3Otsuki, T.: Minimal hypersurfaces in a Riemannian manifold of constant curvature. Amer. J. Math., 92, 145-173 (1970).
  • 4Cheng, Q. M.: Hypersurfaces in a unit sphere S^n+1(1) with constant scalar curvature. J. London Math. Soc., 64(2), 755-768 (2001).
  • 5Leite, M. L.: Rotational hypersurfaces of space forms with constant scalar curvature. Manuscripta Math., 67, 285-304 (1990).
  • 6Chern, S. S., do Carmo, M., Kobayashi, S.: Minimal submanifolds of a sphere with second fundamental form of constant length. Funct. Anal. Related Fields., 59-75 (1970).
  • 7Li, H.: Global rigidity theorems of hypersurface. Ark. Math., 35, 327-351 (1997).
  • 8Barbosa, J. N., Brasil Jr., A, Costa, E. A., Lazaro, I. C.: Hypersurfaces of the Euclidean sphere with nonnegative Ricci curvature. Arch. Math. (Basel)., 81(3), 335-341 (2003).
  • 9Cartan, E.: Familles de surfaces isoparametriques dans les espaces a courvure constante. Ann. Mat, 17, 177-191 (1938).
  • 10Lawson, H. B.: Local rigidity theorems for minimal hypersurfaces. Ann. of Math., 89, 179-185 (1969).

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部