期刊文献+

Boundedness of Some Maximal Commutators in Hardy-type Spaces with Non-doubling Measures 被引量:8

Boundedness of Some Maximal Commutators in Hardy-type Spaces with Non-doubling Measures
原文传递
导出
摘要 Let μ be a non-negative Radon measure on R^d which satisfies only some growth conditions. Under this assumption, the boundedness in some Hardy-type spaces is established for a class of maximal Calderón-Zygmund operators and maximal commutators which are variants of the usual maximal commutators generated by Calder6ón- Zygmund operators and RBMO(μ) functions, where the Hardytype spaces are some appropriate subspaces, associated with the considered RBMO(μ) functions, of the Hardv soace H^I(μ) of Tolsa. Let μ be a non-negative Radon measure on R^d which satisfies only some growth conditions. Under this assumption, the boundedness in some Hardy-type spaces is established for a class of maximal Calderón-Zygmund operators and maximal commutators which are variants of the usual maximal commutators generated by Calder6ón- Zygmund operators and RBMO(μ) functions, where the Hardytype spaces are some appropriate subspaces, associated with the considered RBMO(μ) functions, of the Hardv soace H^I(μ) of Tolsa.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第6期1129-1148,共20页 数学学报(英文版)
基金 Program for New Century Excellent Talents in University(NCET-04-0142)of China
关键词 maximal commutator Calderon Zygmund operator RBMO(μ) Hardy-type space non-doubling measure maximal commutator, Calderon Zygmund operator, RBMO(μ), Hardy-type space, non-doubling measure
  • 相关文献

参考文献26

  • 1Fu, X., Hu, G., Yang, D.: A Remark on boundedness of Calderon-Zygmund operators in non-homogeneous spaces. Acta Mathematica Sinica, English Series, 23(3), 449-456 (2007).
  • 2Garcia-Cuerva, J., Martell, J. M.: On the existence of principal values for the Cauchy integral on weighted Lebesgue spaces of non-doubling measures. J. Fourier Anal. Appl., 7, 469-487 (2001).
  • 3Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderon-Zygmund operators on nonhomogeneous spaces. Internat. Math. Res. Notices, 15, 703-726 (1997).
  • 4Nazarov, F., Treil, S., Volberg, A.: Accretive system Tb-theorems on nonhomogeneous spaces. Duke Math. J., 113, 259-312 (2002).
  • 5Nazarov, F., Treil, S., Volberg, A.: The Tb-theorem on non-homogeneous spaces. Acta Math., 190, 151-239 (2003).
  • 6Orobitg, J., Perez, C.: Ap weights for nondoubling measures in R^n and applications. Trans. Amer. Math. Soc., 354, 2013-2033 (2002).
  • 7Sawano, Y., Tanaka, H.: Morrey spaces for non-doubling measures. Acta Mathematica Sinica, English Series, 21(6), 1535-1544 (2005).
  • 8Tolsa, X.: Littlewood-Paley theory and the T(1) theorem with non-doubling measures. Adv. Math., 164, 57-116 (2001).
  • 9Tolsa, X.: The space H^1 for nondoubling measures in terms of a grand maximal operator. Trans. Amer. Math. Soc., 355, 315-348 (2003).
  • 10Tolsa, X.: Painleves problem and the semiadditivity of analytic capacity. Acta Math., 190, 105-149 (2003).

同被引文献22

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部