摘要
Let μ be a non-negative Radon measure on R^d which satisfies only some growth conditions. Under this assumption, the boundedness in some Hardy-type spaces is established for a class of maximal Calderón-Zygmund operators and maximal commutators which are variants of the usual maximal commutators generated by Calder6ón- Zygmund operators and RBMO(μ) functions, where the Hardytype spaces are some appropriate subspaces, associated with the considered RBMO(μ) functions, of the Hardv soace H^I(μ) of Tolsa.
Let μ be a non-negative Radon measure on R^d which satisfies only some growth conditions. Under this assumption, the boundedness in some Hardy-type spaces is established for a class of maximal Calderón-Zygmund operators and maximal commutators which are variants of the usual maximal commutators generated by Calder6ón- Zygmund operators and RBMO(μ) functions, where the Hardytype spaces are some appropriate subspaces, associated with the considered RBMO(μ) functions, of the Hardv soace H^I(μ) of Tolsa.
基金
Program for New Century Excellent Talents in University(NCET-04-0142)of China