期刊文献+

Log Structures on Generalized Semi-Stable Varieties

Log Structures on Generalized Semi-Stable Varieties
原文传递
导出
摘要 In this paper, a class of morphisms which have a kind of singularity weaker than normal crossing is considered. We construct the obstruction such that the so-called semi-stable log structures exists if and only if the obstruction vanishes. In the case of no power, if the obstruction vanishes, then the semi-stable log structure is unique up to a unique isomorphism. So we obtain a kind of canonical structure on this family of morphisms. In this paper, a class of morphisms which have a kind of singularity weaker than normal crossing is considered. We construct the obstruction such that the so-called semi-stable log structures exists if and only if the obstruction vanishes. In the case of no power, if the obstruction vanishes, then the semi-stable log structure is unique up to a unique isomorphism. So we obtain a kind of canonical structure on this family of morphisms.
作者 Ting LI
机构地区 LMAM
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第7期1217-1232,共16页 数学学报(英文版)
基金 supported by NSFC(10131010)
关键词 log structure normal crossing singularity semi-stable variety log structure, normal crossing singularity, semi-stable variety
  • 相关文献

参考文献18

  • 1Mumford, D., Deligne, P.: The irreducibility of the space of curves of given genus. Publ. Math. Inst. Hautes Etud. Sci., 36, 75-109 (1969).
  • 2Friedman, R.: Global smoothings of varieties with normal crossings. Ann. Math., 118, 75-114 (1983).
  • 3Kato, F.: Log Smooth Deformation Theory. Tohoku Math. J., 48, 317-354 (1996).
  • 4Kato, F.: Logarithmic embeddings and logarithmic semistable reductions, arXiv:math.AG/9411006.
  • 5Olsson, Martin C.: Universal log structures on semi-stable varieties. Tohoku Math ,Journal, 55, 397-438 (2003).
  • 6Kato, F.: Log smooth deformation and moduli of log smooth curves. Internat. J. Math., 11, 215-232 (2000).
  • 7Matsumura, H.: 2nd, Commutative Algebra, The Benjamin/Cummings Publishing Company, Inc., New York, 1980.
  • 8Matsumura, H.: Cambridge studies in advanced mathematics 8, Commutative ring theory, Cambridge University Press, Cambridge, 1989.
  • 9Grothendieck, A.: Elements de Geometrie Algebrique IV: Etude locale des schema et des morphismes de schemas. Publ. Math. IHES, 20, (1964).
  • 10Grothendieck, A.: Elements de Geometrie Algebrique IV: Etude locale des schema et des morphismes de schemas. Publ. Math. IHES, 24, (1965).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部