摘要
This paper investigates the explicit convergence rates to the stationary distribution π of the embedded M/G/1 queue; specifically, for suitable rate functions r(n) which may be polynomial with r(n) = n^l, l 〉 0 or geometric with r(n) = α^n, a 〉 1 and "moments" f ≥ 1, we find the conditions under which Σ∞n=0 r(n)||P^n(i,·) - π(·)||f ≤ M(i) for all i ∈ E. For the polynomial case, the explicit bounds on M(i) are given in terms of both "drift functions" and behavior of the first hitting time on the state O; and for the geometric case, the largest geometric convergence rate α* is obtained.
This paper investigates the explicit convergence rates to the stationary distribution π of the embedded M/G/1 queue; specifically, for suitable rate functions r(n) which may be polynomial with r(n) = n^l, l 〉 0 or geometric with r(n) = α^n, a 〉 1 and "moments" f ≥ 1, we find the conditions under which Σ∞n=0 r(n)||P^n(i,·) - π(·)||f ≤ M(i) for all i ∈ E. For the polynomial case, the explicit bounds on M(i) are given in terms of both "drift functions" and behavior of the first hitting time on the state O; and for the geometric case, the largest geometric convergence rate α* is obtained.
基金
Supported by National Natural Science Foundation of China(No.10171009)