期刊文献+

一类具非线性二阶导数项的Schr dinger方程整体解存在的最佳条件

Sharp Condition of Global Existence for a Class of Second Order Derivative Nonlinear Schr dinger Equations
原文传递
导出
摘要 本文讨论一类具非线性二阶导数项的Schr(?)dinger方程,它在物理上描述了上混合振荡传播.根据基态的变分特征,运用势井方法和凹方法,我们获得了其初值问题整体解存在的一个最佳条件,另外还证明了当初值多小时,初值问题的整体解存在. This paper discusses a type of second order derivative nonlinear SchrSdinger equations which are used to describe the upper-hybrid oscillation propagation in physics. In terms of the variational characteristics of the ground state, by applying the potential well argument and the concavity method, we get a sharp condition for global existence to the solutions of this equation. In addition, that how small the initial are, the global solutions exist is also given.
作者 舒级 张健
出处 《应用数学学报》 CSCD 北大核心 2007年第3期462-467,共6页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10271084) 教育部优秀青年教师资助计划项目(教人司[2003]355号) 四川省教育厅资助科研项目 四川师范大学科研项目资助项目.
关键词 具非线性二阶导数项的Schrōdinger方程 最佳条件 整体解 爆破 基态 second order derivative nonlinear SchrSdinger equation sharp condition global solution blow-up ground state
  • 相关文献

参考文献18

  • 1Porkolab M,Goddman M V.Upper-hybrid Solitons and Oscillating Two-stream Instability.Phys.Fluids,1976,19(6):872-881
  • 2Kuzetsov E A,Rubenchik A M,Zchharov V E.Soliton Stability in Plasmas and Hydrodynamics.Phys.Reports,1986,142(3):103-165
  • 3Makhanov V G.Dynamics of Classical Solitons (In non-integrable Systems).Phys.Reports,1978,35(1):1-128
  • 4Laedke E W,Spatschekv K H.Evolution Theorem for a Class of Pertuded Envolope Soliton Solutions.J.Math.Phys.,1983,24(12):2764-2769
  • 5Poppenberg M.On the Local Well Posedness of Qualinear Schr(o)dinger Equations in Arbitary Space Dimension.J.Differential Equations,2001,172:83--115
  • 6Poppenberg M.An Inverse Function Thoerem in Sobolev Spaces and Applications to Quasi-linear Schrodinger Esquations.J.Math.Anal.Appl.,2001,258:146-170
  • 7张健.具非线性二阶导数项的Schrodinger方程混合问题的爆破性质[J].达县师专学报,1994,4(2):29-36. 被引量:3
  • 8García Juan J,Konotop Vladimir V,Boris Malomed,et al.A Quasi-local Gross-Pitaevskii Equation for Attractive Bose-Einstein Condensates.Mathematics and Computers Simulation,2003,62:21-30
  • 9Poppenberg M,Schmitt K,Wang Z Q.On the Existence of Soliton Solutions to Quasliinear Schrodinger Equations.Calc.Var.Partial Differential Equations,2002,14:329-344
  • 10Liu J Q,Wang Y Q,Wang Z Q.Soliton Solutions for Quasliinear Schrodinger Equations,Ⅱ.J.Differential Equations,2003,187:473-493

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部