期刊文献+

协整模型中门限协整的一种辨识方法 被引量:2

Identification Method of Threshold Cointegration in Cointegrating Model
下载PDF
导出
摘要 考虑非线性、非平稳时间序列中门限协整模型的辨识问题,给出协整模型属于线性协整还是门限协整的一种判断方法。给出门限协整回归模型的定义,构造了辨识线性协整和门限协整的SupW统计量,并得到了SupW统计量的极限分布。给出逼近极限分布的Bootstrap方法,计算渐近p-值确定协整模型是线性协整还是门限协整。模拟计算和实例计算证明了该辨识方法的有效性,具有重要的应用价值。 For modeling nonlinear and nonstationary time series, an identification method was proposed to detect threshold cointegration in cointegrating regression model. A SupW statistic was given and its null asymptotic distribution was derived. The residual-based block bootstrap was presented for approximating to limiting distribution and computing asymptotic p-value. The effectiveness of this method was investigated by the finite sample simulations. The results show that the empirical size of the method is close to the normal one and the method succeeds in distinguishing threshold cointegration from linear cointegration.
作者 杨政 田铮
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第13期2885-2888,共4页 Journal of System Simulation
基金 国家自然科学基金(60375003) 航空基础科学基金(03I53059)
关键词 门限协整 辨识 非线性非平稳 SupW统计量 BOOTSTRAP 渐近p-值 threshold cointegration identification nonlinear and nonstationary SupW statistic bootstrap asymptotic p-value
  • 相关文献

参考文献10

  • 1Engle R F,Granger C W J.Cointegration and error correction:representation,estimation and testing[J].Econometrica (S0012-9682),1987,55(2):251-276.
  • 2Granger C W J,Newbold P.Spurious regression in Econometrics[J].Journal of Econometrics (S0304-4076),1974,2(2):111-120.
  • 3Saikkonen P,Choi I.Cointegrating Smooth Transition Regressions[J].Econometric Theory (S0266-4666),2004,20(2):301-340.
  • 4Choi I,Saikkonen P.Testing linearity in cointegrating smooth transition regressions[J].Econometrics Journal (S1368-4221),2004,7(2):341-346.
  • 5Gonzalo J,Pitarakis J Y.Threshold effects in cointegrating relationships,Oxford Bulletin of Economics and Statistics (S0305-9049),2006,68(S1):813-833.
  • 6Wen Xian-Bin,Tian Zheng.Bootstrap M-estimation of parameters in the exponential signal model[J].Electronics Letters (S0013-5194),2002,38(23):1483-1485.
  • 7温显斌,田铮,林伟,杨政.指数信号模型中参数估计的Bootstrap逼近[J].工程数学学报,2004,21(6):973-978. 被引量:4
  • 8Efron B,Tibshirani R J.An introduction to the bootstrap[M].New York:Chapman and Hall,1993.
  • 9Shao J.Bootstrap model selection[J].Journal of the American Statistical Association (S0162-1459),1996,91(434):655-665.
  • 10Andrews D W K,Ploberger W.Optimal tests when a nuisance parameter is present only under the alternative[J].TEconometrica (S0012-9682),1994,62(6):1383-1414.

二级参考文献12

  • 1Kannan N, Kundu D. Estimating parameters in the damped exponential model[J]. Signal processing,2001 ;81:2343- 2351
  • 2Golub G H, Pereyra V. The differentiation of pseudoinverses and nonlinear least squares problems whose variable separates[J]. SIAM J Numer Anal, 1973;10:413-432
  • 3Osborne M R, Smyth G. A modified Prony algorithmfor exponential function fitting[J]. SIAM J Comput,1995;16:119-138
  • 4Prasad S, Chakraborty M, Parthasarathy H. The role of statistics in signal processing a brief review and some emerging trends[J]. Indian J Pure Appl Math,1995;26:547-578
  • 5Kundu D. A modified Prony algorithm for sum of damped or undamped exponential signals[J]. Sankhya Ser, 1994;56:525-544
  • 6Efron B. Tibshirani R. An introduction to the Bootstrap[M]. London, U.K., Champman & Hall,1993
  • 7Shao J. Bootstrap model selection[J]. J Amer Statist Assoc, 1996:91:655-665
  • 8Zoubir A M, Boashash B. The Bootstrap and its application in signal processing[J]. IEEE signal processing mag, 1998;15:57-76
  • 9Politis D N. A primer on Bootstrap methods in statistics[J]. IEEE signals processing mag, 1998;15:39-55
  • 10Bicke P, Freedman D. Some asymptotic theory for the Bootstrap[J]. Ann Statist, 1981;9:1196-1217

共引文献3

同被引文献24

  • 1李良.油价波动对中国经济的影响研究[J].石油大学学报(自然科学版),1993,17(3):92-96. 被引量:9
  • 2韩智勇,魏一鸣,焦建玲,范英,张九天.中国能源消费与经济增长的协整性与因果关系分析[J].系统工程,2004,22(12):17-21. 被引量:464
  • 3杨政,田铮,党怀义.水平门限同积模型参数的拟极大似然估计[J].控制理论与应用,2007,24(2):299-302. 被引量:1
  • 4Jalnes D Hamilton. A new approach to the economic analysis of non-stationary time series and the business cycle [J]. Econometrica, 1989, 57(2): 357-384.
  • 5Burbidge J, Harrison A. Testing for the effects of oil-price rises using vector auto-regression [J]. International Economic Review, 1984, 25(2): 459 484.
  • 6Roy Boyd, Doroodian K, Dennis Thomton. The impact of oil price volatility on the future of the U.S. economy [J]. Energy and Environment, 2001, 11(1): 25-48.
  • 7IEA. Impact of High Oil Prices on World Economic Growth: A Mixed Assessment [N]. Middle East Economic Survey, 2004, 47(24): AI-A3, D2.
  • 8Engle R E, Granger C W J. Co-integration and error-correction: Re-presentation, estimation and testing [J]. Econometrica, 1987, 55(2): 251 276.
  • 9Petruccelli J D, Woolford S W. On a class of threshold AR(k) processes [J]. Annals of Operations Research, 1987, 9(1): 421-436.
  • 10Tong H. Threshold Models in Nonlinear Time Series Analysis [A]. Lecture Notes in Statist, 21 [M]. Berlin: Springer, 1983.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部