期刊文献+

间歇过程模糊预测学习控制器的设计与仿真 被引量:1

Design and Simulation of Fuzzy Predictive Learning Controller for Batch Process
下载PDF
导出
摘要 针对工业间歇过程的控制问题,分析比较了现有的两类反馈-前馈迭代学习算法在解决工业间歇过程控制系统滞后问题上的缺陷,采用T-S模糊预测模型,在原有反馈-前馈迭代学习算法基础上引入预测思想,研究了基于模糊预测的迭代学习算法,并设计了一种模糊预测学习控制器。以具有滞后、变参数特性的间歇过程为例,进行了仿真研究,验证了提出方法的有效性。 As for the control of industrial batch processes, it is the limitation of the two existent kinds of feedback-feed forward iterative learning algorithm to solving delayed questions of industrial batch process control systems that is analyzed and compared. Based on these, T-S fuzzy predictive model was adopted. Predictive idea was introduced into the old feedback-feedforward iterative learning algorithm. An improved algorithm of iterative learning control (ILC) based on fuzzy prediction was researched and a kind of fuzzy predictive learning controller was designed. The batch process with the pure lag and time-variation parameters was simulated, which turned out that the method works well.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第13期3018-3021,共4页 Journal of System Simulation
基金 教育部高等学校博士学科点专项科研基金(20040280017) 河南省自然科学基金(0511010800)
关键词 间歇过程 模糊模型预测 迭代学习控制 MATLAB仿真 batch process fuzzy model prediction iterative learning control MATLAB simulation
  • 相关文献

参考文献5

二级参考文献46

  • 1孙明轩,万伯任.非线性系统高阶迭代学习算法[J].控制与决策,1994,9(3):195-199. 被引量:10
  • 2皮道映,孙优贤.离散非线性系统开闭环P型迭代学习控制律及其收敛性[J].控制理论与应用,1997,14(2):157-161. 被引量:16
  • 3Bryson A E. Dynamic Optimization [M]. Menlo Park, CA:Addison-Wesley-Longman, 1999.
  • 4Carlos R G, Miguel V R. Decoupled Control of Temperature and Relative Humidity Using a Variable-Air-Volume HVAC System and Non-interacting Control [A]. Proceedings of the 2001 IEEE Internationai Conference on Control Applications [C]. Mexico City,Mexico: 2001, 1147-1151.
  • 5Seong C, Widrow B. Neural Dynamic Optimization for Control Systems-Part II, Theory [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2001, 31(4): 490-501.
  • 6McFarlank M B, Rysdyk R T, Calise A J. Robust Adaptive Control Using Single-hidden-layer Feedforward Neural Networks [A].Proceedings of the American Control Conference [C]. California: San Diego, 1999, 4178-4182.
  • 7Takagi T,Sugeno M.Fuzzy identification of systems and its application to control[J].IEEE Trans on SMC(S0018-9472),1986,15 (1):116-132.
  • 8Clarke D W MohtadiC,Tuffs P S.Generalized predictive control-part I and II[J].Automatica(S0005-1098),,1987,23 (2):137-160.
  • 9Liu Haifa,Wei Qingfu.Identification and optimization of T-S fuzzy model[C]// In:Chen H F ed.Proceedings of the 14th World Congress of IFAC,Beijing,China,1999; Elsevier Science,1999,Vol K:273-278.
  • 10Zhang H G,Cai LL,Bien Zeungnam.A multivariable generalized predictive control approach based on T-S fuzzy model[J].Journal of Intelligent & Fuzzy System:Applications in Engineering And Technology(S1064-1246),,2000,9(34):169-189.

共引文献44

同被引文献5

  • 1崔彩莲,孙明轩.注塑机注射速度的离散预期学习控制[J].机械工程学报,2007,43(6):41-47. 被引量:12
  • 2Huang S N,Tan K K,Lee T H.Neural-network-based predictive learning control of ram velocity in injection molding[J].IEEE Transactions on Systems,Man,and Cybernetics-Parle:Applications and Reviews,2004,34(3):363-368.
  • 3Gao F,Yang Y,Shao C.Robust iterative learning control with applications to injection molding process[J].Chemical Engineering Science,2001,56:7025-7034.
  • 4Tan K K,Tang J C.Learning-enhanced PI control of ram velocity in injection molding machines[J].Engineering Applications of Artifical Intelligence,2002,65:65-72.
  • 5Rafizadeh M,Patterson W I,Kamal M R.Physically-based model of thermoplastics injection molding for control applications[J].Int Polymer Processing,1996,11(4):352-361.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部