期刊文献+

基于RSPWVD-Hough的多分量LFM信号检测 被引量:6

Multi-component LFM Signal Detection Based on Reassign-Smooth-Pseudo-Wigner-Ville Distribution
下载PDF
导出
摘要 由于多分量LFM信号的双线性时频分布(BTFD)存在交叉项的干扰,所以在低信噪比条件下直接在时频平面难于进行检测,采用重排平滑伪魏格纳维尔分布(RSPWVD),能在抑制交叉项的同时提高时频聚集性,并利用Hough变换检测图像中直线的原理,将多分量LFM信号的检测问题转换为在参数空间寻找局部极大值的问题,由于Hough变换运算量较大,提出一种在平滑重排后进行设定门限处理的方法,仿真实验表明,该方法可以在抑制噪声和交叉项的同时大大减少运算量。 Because of the presence of cross-term interference in bilinear time-frequency distribution (BTFD) of multi-component chirp signal, it is difficult to detect the chirp components in a time:frequency plane in low SNR. Using reassign-smoothed -pseudo-wigner-ville(RSPWV) can restrain cross-term and enhance time-frequency concentration, and change the detection problem in multi-component chirp signal to searching local max in parameter space through Hough Transform. The threshold was set after RSPWVD to reduce calculation of Hough Transform. Simulation results show that the method can suppress noise and cross-term interference, and shorten calculation time.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第13期3030-3032,3037,共4页 Journal of System Simulation
基金 船舶工业国防科技基础研究基金项目(04J5.5.7)
关键词 魏格纳-维尔分布 平滑 重排 HOUGH变换 门限 wigner-ville distribution smooth reassign Hough Transform threshold
  • 相关文献

参考文献7

  • 1Cohen L.Time-frequency distributions[J].A review,Proc.IEEE(S0018-9219),1989,77(7):941-981.
  • 2Boashash B,White L,Imberger J.Wigner-Ville analysis of non-stationary random signals[C]// ICASSP 86,1986:2323-2326.
  • 3章毓晋.图像分割[M].北京:科学出版社,2001..
  • 4Barbarossa S,Zanalda A.A Combined Wiger-Ville and Hough Transform for Cross-terms Suppression and Optimal detection and parameter Estimation[C]//Proc.ICASSP'92,San Francisco,C.1992.
  • 5Barbarossa S.Analysis of Multicomponent LFM Signals by a Combined Wigner-Hough Transform[J].IEEE Trans (S1053-587X),1995,43(6):1511-1515.
  • 6袁俊泉,孙敏琪,孙晓昶.基于Wigner-Hough变换的LFM信号参数估计方法[J].航天电子对抗,2004,33(6):20-23. 被引量:5
  • 7穆学禄,陈建春,张宏宽.基于Wigner-Hough变换的反辐射导弹检测技术[J].西安电子科技大学学报,2005,32(4):616-618. 被引量:1

二级参考文献19

  • 1陈建春 耿富录 赵树杰.动杂波谱中心的估计偏差对MTI性能影响分析[J].西安电子科技大学学报,2000,27:17-20.
  • 2Wood J C, Barry D T. Radon Transformation of Time-Frequency Distribution for Analysis of Multi-Component Signals [J]. IEEE Trans on Signal Processing, 1994, 42(11): 3 166-3 177.
  • 3Wang Minsheng, Chan A K. Linear Frequency-Modulated Signal Detection Using Radon-Ambiguity Transform[J]. IEEE Trans on Signal Processing, 1998, 46(3): 571-586.
  • 4Abatzoglou TJ. Fast Maximum Likelihood Joint Estimation of Frequency and Frequency Rate[J]. IEEE Trans. On AES- 22:708~715.
  • 5Peleg S,Poart B. Linear FM Signal Parameter Estimation from Discrete Time Observations [ J]. IEEE Trans. On AES- 27:607~616.
  • 6Ikram MZ,Abed-Meraim K, Hua YB. Estimating the parameters of Chirp Signals: An Iterative Approach[J]. IEEE Trans. On SP- 46:3436~3441.
  • 7Djuric PM, Kay SM. Parameter Estimation of Chirp Signals[J]. IEEE Trans. On ASSP - 38: 2118 ~2126.
  • 8Xia XG. Discrete Chirp-Fourier Transform and Its Application to Chirp Rate Estimation[J]. IEEE Trans. On SP- 48:3122~3133.
  • 9Friedlander B. Parametric Signal Analysis Using The Polynomial Phase Transform[J]. Philips J. Research1980,35(6) :217~250.
  • 10Peleg S, Friedlander B. Signal Estimation Using The Discrete Polynomial Transform[J]. Philips J. Research1980,35(6) :276~300.

共引文献580

同被引文献18

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部