期刊文献+

序Banach空间中一类算子方程的可解性

Solvability of a Class of Operator Equations in Ordered Banach Spaces
原文传递
导出
摘要 利用改进的Mnch紧性条件,研究了一类算子方程Lx=Nx的解的存在性.本文结果并没有要求算子L和N的连续性.作为应用,讨论了右端项不连续的隐式椭圆偏微分方程的边值问题的解的存在性. In this paper, we investigate the existence of solutions for a class of operator equations Lx = Nx by using an improved weak compactness condition of MSnch. Here neither L nor N needs to be continuous. We also give some applications to boundary value problems of implicit elliptic differential equations with discontinuous right hand side.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2007年第4期823-830,共8页 Acta Mathematica Sinica:Chinese Series
关键词 序空间 算子方程 增算子 ordered spaces operator equations increasing operators
  • 相关文献

参考文献9

  • 1Monch H., Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Analysis, 1980, 4:985 999.
  • 2Wang J. G., Fixed points of increasing operators in ordered Banach spaces, Acta Mathematica Sinica, Chinese Series, 2000, 43(1): 43-48.
  • 3Seda V, Monotone-iterative technique for decreasing mappings, Nonlinear Analysis, 2000, 40:577-588.
  • 4Heikkila S., New iterative methods to solve equations and systems in ordered spaces, Nonlinear Analysis, 2002, 51: 1233-1244.
  • 5Liu S. Y., Feng Y. Q., Solvablity of a class of operator equations in partially ordered complete metric space and in partially ordered Banach space, Acta Mathematica Sinica, Chinese Series, 2005, 48(1): 109-114.
  • 6Heikkila S., A method to solve discontinuous boundary value problems, Nonlinear Analysis, 2001, 47: 2387- 2394.
  • 7Guo D. J., Sun J. X., Liu Z. L., Functional method of nonlinear ordinary differential equations, Jinan: Shandong Sci. And Tech. Press, 1995
  • 8Diestel J., Ruess W. M., Schachermayer W., Weak compactness in L^1(μ, X), Proc. Amer. Math. Soc., 1993, 118: 447-453.
  • 9Carl S., Heikkila S., Nonlinear differential equations in ordered spaces, London: Chapman and Hall/CRC, 2000.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部