期刊文献+

超模的同构定理 被引量:3

Isomorphism Theorems of Hypermodules
原文传递
导出
摘要 本文利用模论导出超模的三个同构定理,同时,给出超模的Jordan-Holder定理,最后,探讨了超模的基本关系∈^*,并研究其性质. Three isomorphism theorems of module theory are derived in the context of hypermodules. In particular, the Jordan-Holder theorem is derived for hypermodules. Finally, we consider the fundamental relation e^* defined on a hypermodule and prove some properties.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2007年第4期909-914,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(60474022) 中波合作项目(331502) 香港自然科学基金(2160210(03/05)) 湖北省教育厅重大科研项目(20042002) 重点科研项目(D200529001)
关键词 超模 (正规)子超模 强同态 hypermodule (normal) subhypermodule strong homomorphism
  • 相关文献

参考文献20

  • 1Marty F., Sur une generalization de la notion de groupe, 8th Congress Math. Scandianaves, Stockholm, 1934, 45 49.
  • 2Corsini P., Hypergroup reguliers et hypermodules, Ann Univ. Ferrara-Sez, VII-Sc. Mat., 1975 XX: 121-125.
  • 3Corsini P., Prolegomena of hypergroup theory, Aviani, Editor, 1993.
  • 4Corsini P., Leoreanu V., Applications of hyperstructure theory, Advances in Mathematics, No.5, Dordrecht: Kluwer Academic Publishers, 2003.
  • 5Davvaz B., A brief survey of the theory of Hv-structures, AHA (Alexandroupolis-Orestiada, 2002), Xanthi: Spanidis, 2003, 39 70.
  • 6De Salvo M., Iperanelli ed lpercorpi, Ann. Sci. Clermont I. Ser. Math. Fass., 1985, 22(1): 89-107.
  • 7Vougiouklis T., Hyperstructures and their representations, Hadronic Press Inc., Palm Harbor, USA, 1994.
  • 8Yang J. B., Luo M. K., Priestley Spaces, Quasialgebraic lattices and Smyth powerdomains, Acta Math. Sinica, English Series, 2006, 22(3): 951-958.
  • 9Krasner M., A class of hyperring and hyperfields, Int. J. Math. Math. Sci., 1983, 6(2): 307-312.
  • 10Davvaz B., Poursalavati N. S., On polygroup hyperrings and representation of polygroups, J. Korean Math. Soc., 1999, 36(6): 1021-1031.

同被引文献22

  • 1Jian Ming ZHAN,Bijan DAVVAZ,K. P. SHUM.A New View on Fuzzy Hypermodules[J].Acta Mathematica Sinica,English Series,2007,23(8):1345-1356. 被引量:4
  • 2MARTY F. Sur Une Generalization de la Notion de Groupe [R]. Stockholm: 8th Congress Math, 1934.
  • 3STEPHEN D C. Extension of Polygroups by Polygroups and Their Representations Using Colour Schemes [J]. Univer sal Algebra and Lattice Theory, 1983, 1004: 91-103.
  • 4COMER S D. Polygroups Derived from Cogroups [J] J Algebra, 1984, 89:397 405.
  • 5DAWAZ B, POURSALAVATI N S. On Polygroup Hyperrings and Representation of Polygroups [J]. J Korean Math Soc, 1999, 36(6): 1021-1031.
  • 6ZAHEDI M M, BOLURIAN M, HASANKHANI A. On Polygroups and Fuzzy Subpolygroups [J] J Fuzzy Math, 1995(3) = 1-15.
  • 7ATANASSOV K T. Intuitionistic Fuzzy Sets [J]. Fuzzy Sets Syst, 1986, 20: 87 96.
  • 8Corsini P,Leoreanu V.Applications of Hyperstructure Theory,Advances in Mathematics[M].Dordrecht:Kluwer Academic Publishers,2003.
  • 9Sen M K,Amed R,Chowdhury GFuzzy hypersemigroups[J].Sott Comput, 2008,12(9): 891-900.
  • 10Leoreauu Fotea V, Dawaz B.Fuzzy hypemngs[J].Fuzzy Sets and Systems,2009(160):2 366-2 378.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部